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The νMSM

� The goal of the νMSM is to see how many of the experimental
shortcomings of the Standard Model (rather than fine-tuning
problems) can be explained with right-handed neutrinos

� There is little doubt that the Standard Model is an incomplete
theory. Physical phenomena that cannot be explained include
neutrino oscillations, dark matter, and the baryon asymmetry

� Idea: add the fewest number of right-handed neutrinos needed
to explain these phenomena → 3 right-handed neutrinos

L = LSM + NI i�∂NI − FαILαNIH +
MIJ

2
Nc
I NJ + h.c.

� What pattern of masses MIJ and Yukawa couplings FαI is
needed to explain dark matter and the baryon asymmetry?
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Dark matter

� In the νMSM, the sterile neutrino N1 is the dark matter

Lyman-α bound

� Free streaming N1 would wipe out small scale density
fluctuations unless its velocity is small enough

M1 & 8 keV

X-ray constraint

� N1 mixing with active neutrinos allows the decay N1 → ν + γ,
which has not been observed

F1 . 4× 10−12
(

keV

M1

)1.2
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Dark matter

� N1 mixing with active neutrinos is also responsible for N1

production via active-sterile neutrino oscillations

� Demanding that 100% of dark matter be produced in this way
fixes a relation between M1 and the mixing angle θ1

Dark matter production bound

� Assuming a large lepton asymmetry (Shi-Fuller scenario),
dark matter production and the X-ray constraint give

M1 . 50 keV
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Baryon asymmetry

� Baryogenesis proceeds via leptogenesis: N2,N3 oscillations
produce an asymmetry in active neutrinos that is converted
into a baryon asymmetry by sphalerons (B − L conserved)

Baryon asymmetry

� Requiring no lepton number violating processes above TEW

(or else lepton asymmetry is wiped out) and N2,N3 decaying
before Big Bang Nucleosynthesis gives

F2,F3 . 10−6, M2,M3 ∼ 1− 20 GeV

� Effective baryon asymmetry production then requires

F2 ∼ 10−6, F3 ∼ 10−6ε, ∆M32 ∼ keV
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Summary of masses and couplings

� Thus the νMSM requires a specific pattern of Majorana
masses and Yukawa couplings

M3

M2

M1

∆M32 ∼ keV

10 keV

10 GeV

F3 ∼ εF2

F2

F1

10−6

10−12

� We would like to explain this pattern in a natural way
(otherwise there is some level of fine-tuning)

� Can flavour symmetries be used to give this pattern?
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Explaining masses and couplings

� The approach we take is a combination of continuous/discrete
symmetries and the Froggatt-Nielsen mechanism

� First we suppose that Majorana masses are given by the VEV
of a new scalar φ and regular Yukawa couplings are allowed

∆L =
1

2
λIJφNINJ − FIνHNI + h.c.

A simple U(1) symmetry and charge assignment that can give
these terms is

N1 N2 N3 φ νH

U(1)φ 1 1 1 -2 -1

� Note that we have a new interaction φNINJ compared with
the νMSM

MIJ = λIJ 〈φ〉
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Explaining masses and couplings

� Next we impose a Z2 symmetry to prevent N1N2 and N1N3

mass terms that tend to produce large F1

N1 N2 N3 φ νH

Z2 1 0 0 0 0

� Under this symmetry, F1 = 0 and hence there is no N1

production from active-sterile neutrino oscillations →
primordial N1 production from new interaction φN1N1

� A hierarchical mass matrix and Yukawa couplings that
produce the rest of the desired pattern is

MIJ ∼

(
keV 0 0

0 keV GeV
0 GeV ∗

)
, FαI ∼

(
0 10−6 10−6ε
...

...
...

)
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Explaining masses and couplings
� To generate heirarchies, use the Froggatt-Nielsen mechanism

◦ Introduce a U(1)FN symmetry and scalar field ϑ
◦ Charge particles under the U(1)FN symmetry
◦ Once ϑ acquires a VEV, powers of 〈ϑ〉 /MPl suppress terms.

For example,

φN1N1 ϑ
5 −→

(
〈ϑ〉
MPl

)5

φN1N1

� Take 〈ϑ〉MPl
≈ 10−2 and assign charges

N1 N2 N3 φ νH ϑ

U(1)FN 2 -3 4 1 0 -1

� With 〈φ〉 ∼ 105 GeV, this gives the parameters

M1 ∼ 10 keV, M2,M3 ∼ 10 GeV, ∆M32 ∼ 10 keV

F1 = 0, F2 ∼ 10−6, F3 ∼ 10−8

+5 -5

Symmetries, the νMSM and cosmology Kyle Allison



Introduction to the νMSM Model building with symmetries and scalars Summary

Primordial N1 production and inflation

� With F1 = 0, the only source of N1 production is through the
decays φ→ N1N1 (if mφ > 2M1)

� Assuming φ is in thermal equilibrium for T ≈ mφ (due to its
mixing with the Higgs), the amount of N1 produced is

ΩN1 ∼
(
λ11

10−8

)3(〈φ〉
mφ

)
100% DM

=⇒ λ11 ∼ 10−8
(
mφ

〈φ〉

)1/3

� Check that φ can be the inflaton in a particular model of
inflation: chaotic inflation with a quartic potential
(Shaposhnikov & Tkachev, Phys. Lett. B 639 (2006) 414–417)

V (H, φ) = λ
(
H†H − α

λ
φ2
)2

+
β

4
φ4 − 1

2
m2
φφ

2
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Primordial N1 production and inflation

� For a quartic potential, the COBE measurement of
temperature fluctuations in the CMB fixes β ∼ 10−13.
Expanding V (H, φ) about its minima gives the relations

mφ

〈φ〉
=
√

2β ∼ 10−6, mφ = mh

√
β

2α
∼ 100 MeV

� Dark matter production then requires

λ11 ∼ 10−8
(
mφ

〈φ〉

)1/3

∼ 10−10 =⇒ M1 ∼ 10 keV 4

� Remark

◦ For this primordial production, φ doesn’t need to be the
inflaton – it only needs to be in thermal equilibrium
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Phenomenological consequences

� Phenomenology is generally similar to the νMSM but with
some differences due to vanishing F1 and light inflaton φ

� Neutrino experiments

◦ One massless active neutrino and other two fixed at 9 and
50 meV (47 and 48 meV) for normal (inverted) hierarchy

◦ N2,N3 mixing with active neutrinos of the order θ2,3 ∼ 10−5.5

◦ Conflict with LSND and MiniBooNE hints of an eV sterile
neutrino with large mixing (θ ∼ 0.1)

� Astrophysics

◦ Negative result for x-ray searches of decaying N1 (θ1 = 0)
◦ Light inflaton may be visible in meson decays

� LHC

◦ Without an intermediate energy scale between the weak and
Planck scales, only the Higgs (mixed with φ) will be found
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Summary

� The νMSM is a model that can explain neutrino oscillations,
dark matter, and the baryon asymmetry with right-handed
neutrinos a specific pattern of masses and couplings

� We have investigated how a U(1)φ × Z2 × U(1)FN symmetry
and additional scalars φ, ϑ can produce such a pattern

� In this extension, dark matter is produced through the decays
φ→ N1N1 and φ may be the inflaton
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Thanks for your attention!

With the support of the European Commission under the
Marie Curie Initial Training Network
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