Interference effects and W' searches

Diego Becciolini

supervisors E. Accomando, C. Shepherd-Themistocleous

arXiv: **III0.07I3**, soon update & PRD publication in collaboration with S. De Curtis, D. Dominici, L. Fedeli

Southampton NET

30 May 2012 – Planck 2012, Warszawa

 Analogy with Young's double-slit experiment: multiple paths \rightarrow transition probability not just sum of probabilities

 Analogy with Young's double-slit experiment: multiple paths \rightarrow transition probability not just sum of probabilities

 Analogy with Young's double-slit experiment: multiple paths \rightarrow transition probability not just sum of probabilities

 Analogy with Young's double-slit experiment: multiple paths \rightarrow transition probability not just sum of probabilities

Interference between A & B

 Analogy with Young's double-slit experiment: multiple paths \rightarrow transition probability not just sum of probabilities

Interference between A & B

• Nothing new...

Rizzo [0704.0235]; Boos et al. [hep-ph/0610080]; Papaefstathiou et Latunde-Dada [0901.3685]

• Nothing new...

Rizzo [0704.0235]; Boos et al. [hep-ph/0610080]; Papaefstathiou et Latunde-Dada [0901.3685]

 However misconceptions still widespread (particularly in experiment)

Nothing new...

Rizzo [0704.0235]; Boos et al. [hep-ph/0610080]; Papaefstathiou et Latunde-Dada [0901.3685]

- However misconceptions still widespread (particularly in experiment)
- Raise awareness and warn against inaccurate statements

• Particular example: extra copies of SM particles

physics? 1 particles

- Particular example: extra copies of SM particles
- If same interaction structure

→ contribute to same processes thus

interference between SM & BSM

physics? M particles

- Particular example: extra copies of SM particles
- If same interaction structure

 \rightarrow contribute to same processes thus interference between SM & BSM

 Resonant channels of special interest because of kinematics (next slide)

- Particular example: extra copies of SM particles
- If same interaction structure

 \rightarrow contribute to same processes thus interference between SM & BSM

- Resonant channels of special interest because of kinematics (next slide)
- Drell-Yan with W'/Z': up until now interference neglected in experimental searches

 $M^2 \supset M_A M_B^* = quarks \bigwedge A leptons \bigwedge Quarks$

$$M^{2} \supset M_{A} M_{B}^{*} = quarks \bigwedge^{A} leptons$$
$$= couplings \times propa$$
$$(g_{L}^{A}g_{L}^{B} + g_{R}^{A}g_{R}^{B})quarks (...)leptons$$
$$(after \int dcos\theta) \qquad (\hat{s} - m_{A}^{2})^{-1} (\hat{s} < 0 \text{ for } m_{A}^{2} <$$

$$M^{2} \supset M_{A} M_{B}^{*} = quarks \bigwedge_{leptons} A_{leptons}$$
$$= \underline{couplings} \times \underline{propa}$$
$$(g_{L}^{A}g_{L}^{B} + g_{R}^{A}g_{R}^{B})q_{uarks} (...)_{leptons}$$
$$(after \int dcos\theta) \qquad (\hat{s} - m_{A}^{2})^{-1} (\hat{s}$$
$$< 0 \text{ for } m_{A}^{2} < 0$$

 \rightarrow Interference destructive between m_A & m_B unless coupling factor < 0

• Generic interference coupling factor for W': gsm² g'l^q g'l^l

- Generic interference coupling factor for W': gsm² g'l^q g'l^l
- Conventional benchmark scenario: Sequential Standard Model (SSM) in which $g'_{L}q = g'_{L}l = g_{SM}^2$

- Generic interference coupling factor for W': gsm² g'l^q g'l¹
- Conventional benchmark scenario: Sequential Standard Model (SSM) in which $g'_{L^q} = g'_{L^1} = g_{SM^2}$
- Neutrinos not detected \rightarrow transverse mass: $\sqrt{\hat{s}} \longrightarrow M_T \approx \sin\theta \sqrt{\hat{s}}$

M_T distributions

M_T distributions

LHC (pp collision) @ 7 TeV, $m_{W'} = 2.5$ TeV

M_T distributions

LHC (pp collision) @ 7 TeV, $m_{W'} = 2.5$ TeV

Reduction of events in intermediate range

• Compare observed events to predicted crosssections in high- M_T search window

- Compare observed events to predicted crosssections in high- M_T search window
- If M_T^{min} cut chosen high enough compared to $m_{W'}$ \rightarrow interference no big effect

- Compare observed events to predicted crosssections in high-M_T search window
- If M_T^{min} cut chosen high enough compared to $m_{W'}$ \rightarrow interference no big effect
- Limits from latest CMS analysis (April 2012): w/o interf. = 2.5 TeV; w interf. = 2.4 TeV

"The expected signal yields [...] are largely unaffected when introducing interference effects, owing to the high M_T cut [...]" **CMS-EXO-11-024** arXiv:1204.4764

"The expected signal yields [...] are largely unaffected when introducing interference effects, owing to the high M_T cut [...]" **CMS-EXO-11-024** arXiv:1204.4764

$\mathcal{B}(W'_R \to \ell \nu), v$				
S	$M_{ m T}^{ m min}$			
	(GeV)			
1				
	350	44		
	550	96		
	700	3		
	800	11		
	1050	2		
	1150	1		
	1200	6		
	1350	18		
	1450	5.4		
	1450	1.		
	1400	0.		
	250	- A A.T.		

"The expected signal yields [...] are largely unaffected when introducing interference effects, owing to the high M_T cut [...]" **CMS-EXO-11-024** arXiv:1204.4764

	I 00 г		
		C	$W'_{\rm R}$) × B
		3	W' mass
		4	(GeV)
	801	4	
			500
			700
		3	900
6		6	1000
	601		1400
6		- S.	1600
~		3	1800
			2100
e T		8	2400
nt	401	1	2700
Ь. -			3000
$\underline{\neg}$		ź.	
	201		
	0		

 Conventionally: in terms of BSM contribution to total cross-section (i.e. no M_T cut)

- Conventionally: in terms of BSM contribution to total cross-section (i.e. no M_T cut)
- Quantity receives
 large contributions
 from PDF, and can
 be dominated by
 interference

mits ribution to

- Conventionally: in terms of BSM contribution to total cross-section (i.e. no M_T cut)
- Quantity receives
 large contributions
 from PDF, and can
 be dominated by
 interference

• Should instead represent high energy behaviour

mits ribution to

 CMS followed our suggestion: now also include limit as function of M_T cut

 CMS followed our suggestion: now also include limit as function of M_T cut

Total cross-section e / u + v) [fb] 95% Observed Limit (Electron) 95% Observed Limit (Muon) 95% Observed (Combined) 95% Expected (Combined) etical Cross Section SSM W' with K-factor Theoretical Cross Section SSM W' without K-factor Theoretical Cross Section for W_{KK} (μ = 10 TeV) Theoretical Cross Section for W_{KK} (μ = 0.05 TeV) ↑10³ N H 10² b CMS $\sqrt{s} = 7 \text{ TeV}$ L dt = 5.0 fb

 CMS followed our suggestion: now also include limit as function of M_T cut

• Interference not always negligible

- Interference not always negligible
- W' searches are being improved

- Interference not always negligible
- W' searches are being improved

Outlook

• Experimentalists might move on to more sophisticated W' search strategies: fit to data

- Interference not always negligible
- W' searches are being improved

Outlook

- Experimentalists might move on to more sophisticated W' search strategies: fit to data
- Discussion of effect in Z' searches

Thank you!