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* Dark matter is a cornerstone of modern cosmology... But we don’t
know what it's made of!

* |f DM is a WIMP, indirect detection is a promising possibility to learn
about its nature and properties:

Antimatter
X searches

In regions of high DM density in the Universe, DM \\ o

can annihilate emitting photons, positrons, F+v . @ y
antiprotons or neutrinos.
/ \\
A THIS TALK!

* |[f DM is a WIMP (cold relic), standard structure formation tells you that
you should expect DM to clump on all scales down to the free-

streaming scale.

* Clumping means enhanced annihilation rates for indirect detection!

mm) \\hat are the implications on the limits? Theoretical uncertainty?
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* Here we analyze in detail the galactic signal, which is subject to less
uncertainty than the extragalactic one.

* To derive limits, we use the isotropic diffuse
component in the sky measured by Fermi-LAT:
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* Gamma-ray emission from DM annihilations
o Which direction in the sky?

* Transport of final state electrons and positrons
o Effect of diffusion on the gamma-ray emission

* Galactic substructure: Minimal halo mass and mass function index

* Results: fluxes towards the galactic anticenter, and high latitudes
o Flux enhancement due to substructure (Boost factor)

* Constraints on DM annihilation cross-sections

* Conclusions
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* Dark matter annihilation can emit photons in many ways:

1. PROMPT EMISSION

AT
X

2. INVERSE-COMPTON COMPONENT

TCMB “Yenergetic

The interstellar radiation field
(IRF) is composed of:

v’ Starlight

v Infrared radiation
v  The CVIB

X

Steve Blanchet, PLANCK2012. Warsaw, 30/0




* Dark matter annihilation can take place in our galaxy or outside. Here
we concentrate on the galactic contribution only.

* The differential gamma-ray flux from DM annihilation within our galaxy
IS given by

Direct output from Pythia

l
2 2
d® _ 1 (ov), . Pp dN, ds [ p(r)
PROMPT dEfy - 47T 2 TG M% dE',y fdQ LOS (80 PO

Components of the IRF
v
S MX
IC ddE(D,y = 7o [dQ d—@ [, X dE Ne(r, E) 32, Pi(Ey, E,7)

/V
Electron density, calculated Differential photon power
from the transport equation emitted from IC scattering

Where we use an NFW density Ps

r) =
profile for our MW: () r/rs(1+r/rs)?
rs = 20.2 kpc, pe = 0.395 GeV/cm?, ro = 8.29 kpc
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* When constraining DM annihilation cross-sections with the IGRB, it is
customary to calculate the gamma-ray flux in the direction where it is
minimal.

— galactic anticenter (b=0°, [=180°) when the DM halo is
smooth.

* Here we argue that the direction of the highest latitudes (galactic
poles, b=90°, [=0°) can also be used for the following reason:

The galactic diffuse component is dominated in | HL,_,::.*

this direction by proton-gas emission and 7 -ray
sources, which are subject to little uncertainty!

mm) Residual flux at the level of the IGRB! | GAC

(also: the presence of substructure makes the
signal more isotropic...)

Steve Blanchet, PLANCK2012. Warsaw, 30/0




* The diffusion-loss equation for electrons in steady state is given by

K(BE)AN(Z,E) — 4 {b(Z E)N(Z,E)} + Q(Z,E) =0

Diffusion coefficient Energy losses Source term

K(F) = KyE?° IC, synchrotron Q(Ts, Bs) = (ov) '02(}?;)%2 ggz

* The diffusion-loss equation can be solved analytically in the absence
of boundary conditions, and if energy losses are independent of
position (true for the CMB!).

Ne(E, E) = 355 [ o dE, [ &3, Go(&s, Bs — T, E) Q(Zs, Es)

with the Green’s function 1 | & |
given by Ge(Zs, Fs > &, F) = (Gr R, 77572 XD ( )

* The assumption of no-diffusion corresponds to the limit
Ge(Zs,Es — T, E) — 63(Z, — T)
in which case the gamma-ray spectrum from IC scattering is given by
dNIC S, Pi(E,,E,r)

8l _ My i /i , X dN.
dE, (T)—fme dr S~ i (E,r) fE dESdE
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* |t is expected on theoretical grounds and confirmed in N-body
simulations that DM forms clumps on a wide range of scales.

ptot.('r) — psm(r) + psub(r)

_ Piot(r) o (r) = ML
Psm (7") = 11;/7% psub(T ) 1+ ‘7’/'7’() re
Anti-biased distribution of subhalos
(see Via Lactea Il simulation)
* Knowing the distribution of clumps in our MW is of crucial importance

to estimate the flux from DM annihilations. We use the formalism of

probability functions: Rois

dNg (r, M) dPnri (M) dPy (1) fO dz‘y) V=1

cl\"yVlcl) ___ M cl Vv M
vat, = N Ta, - av g Eu ) gpg) = 1

*Minimal subhalo mass

Bias radius

Mass function index!

Mass distribution function: 1 Spatial distribution function:
L dPV (T) Psub (T)
dPas (M. Mgy \ o™ —3v = Tpptot
3D (M) = Ko (252 av MoF

Anti-biased!




e

* The mass function index and the minimal halo mass are the two most
crucial parameters.

* The minimal halo mass depends on the precise interactions of the DM
particle with the SM, as it derives from the kinetic decoupling
temperature. Here we consider jf . ¢ (10~ My, 1074 M)

* The mass function index can be accessed in N-body simulations (VLII,
Aquarius), but their resolution is still very far from M ... The latest
simulations find o, = 1.9 whereas the Press-Schechter theory (and
extended versions) on the smallest scales predict o, = 2.

mm) Here we choose tovary ¢y, € (1,97 2)

O | Mmin =107UMg | My = 1074 M,

ol = 0.699 tol = 0.467
2 | Nt =266 x 102! | Nt =266 x 10
rp = 35.08 kpc ry = 117.63 kpc
tol —0.187 tol —0.181

1.9 N:&‘; = 3.06 x 1019 N:S}t) = 1.54 x 1013
ry = 557.11 kpe rp = 582.30 kpc
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* The gamma-ray flux on Earth from DM annihilations in our Galaxy can
be calculated to be:

XX — - (ov) =3 x 10726 ¢m3 (U'l‘::" = 1 ‘l” 10;26’ Cms“
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1. Effects of diffusion tiny!! :
With o = 1.9, almost no
) ) m

2. Substructure important dependence on M, . !
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Boost

* The boost factor gives the flux enhancement due to the presence of
substructure in our Galaxy.
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Steve Blanchet, PLAN‘CKQO:,'asaw, {




* One can then extract exclusion limits by requiring that the flux does

not exceed the IGRB.

(ov) [em® /8]

anv1 = 1.9 ===
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To be compared with the
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* Fermi-LAT gamma-ray measurements offers great probes of the
WIMP DM paradigm.

* The signal from the highest latitudes can be constrained by the IGRB
measurement.

* Diffusion of final state electrons/positrons plays a marginal role both
for the galactic anticenter and the poles.

* We have taken into account DM galactic substructure, in agreement
with recent N-body simulations. The two most relevant parameters are
the mass function index, and the minimal subhalo mass.

* \We found that substructure can boost the signal by up to a factor of
20. With the most pessimistic assumptions, the boost is as low as
20%.

* \We extracted exclusion limits for DM annihilation cross-sections, and
found our limits for optimistic choices of the mass function index to be
competitive with the most stringent to date.
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Back-up
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* The gamma-ray flux from annihilations in galactic substructure can

then be calculated with

mass distribution

l

d® __ ov Po dN, ds dP max dPr (M)
B, ﬁ< >T@M®2 dE, I ro T (r mem dMer E(Me1, 7) =50,
. T (Mo, %) = [, dV <pC1(MCI’fS))2
Spatial distribution ’ Vel PO

annihilation volume
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(o) [em? /s

* The most Ilkely origin for the IGRB is from blazars Assumlng that they

make most of it, we obtain more stringent constraints:
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