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Overview
e Particle physics motivation
e RG generalities.

e R-symmetry, the R-current multiplet, the U multiplet, and the
RG flow.

e A simple example.

e Correlation functions of the U multiplet and IR phases.
e Upper bound on emergent bosonic symmetry.

e Lower bound on emergent fermionic symmetry.

e Universality of emergent SUSY.



Particle physics motivation

e Based on LHC results, weakly-coupled Higgs looks likely... =
SUSY?

o If SUSY exists, then it is broken, and need hidden sector.
Should have some type of R-symmetry (Nelson-Seiberg).

e If SUSY is broken dynamically, there will be some type of strong
coupling involved = study general non-perturbative aspects of
R-symmetric theories.

e Also, we frequently have some emergent bosonic symmetries in
such theories (ISS, etc.) = Constraints on emergent symmetries
should lead to constraints on DSB.



Particle physics motivation (cont...)

e ... But sparticles still haven't been observed. If SUSY is to
remain “natural,” we need light stops. This suggests a sector in
which SUSY breaking is suppressed.

e We will suggest a new non-perturbative RG rule (an inequality
in the spirit of the a-theorem) applicable in a broad class of
R-symmetric theories. It will be related to the emergence of
accidental symmetries (both bosonic and fermionic) in the IR.



RG Generalities

e Under rather general assumptions, UV-complete QFTs can be
understood as interpolations between UV and IR scale-invariant
limits (may also be gapped and hence empty in IR).

e Given well-defined operators and correlation functions of the
UV theory, can we say something about the corresponding ob-
jects in the IR?

e What are the emergent symmetries of the IR fixed points?
What are the broken symmetries?

e In general, new internal and space-time symmetries. What are
they? How do we get a handle on them?



RG Generalities (cont...)

e Non-perturbative dynamics along the RG flow make these ques-
tions hard to answer.

e \We will specialize to four-dimensional R-symmetric theories.
e As we will see SUSY, and, in particular R-symmetry give us

strong handles to use to answer a lot of these questions in con-
trolled settings.



The R-symmetry Current

e Since [R,Q] ~ Q, {Q,Q} ~ P, the R-current transforms in a
multiplet with S, and T}, .
Ddea =Xa, D%%a-— Dé&zd — Dd{XOé = 0. (1)

When xqo = 0, this is the superconformal R-symmetry.

e There is an ambiguity in the above equation under R,; —
Raa + [Da,Dg) J and xa — xa + 3D%DqJ for conserved J, i.e.,
D?2J = 0. This affects the supercurrent and stress tensor through
improvements.



The R-symmetry Current (cont...)

e For the theories we will consider, can write

Yo = D?°DyU (2)

for a well-defined (and away from the endpoints of the RG flow,
non-conserved) U.

e Solving the above equations in the UV of an asymptotically
free theory, we find

RYY = 3 (2Da®;D3®" — 1i[Da, Da®:®")
(
3 2\ -,
0 = 52 (n3) S )



The R-symmetry Current and the RG Flow
e Idea: Study R and U along the flow.

e Assumption: The UV and IR fixed points are SCFTs (this
can be made rigorous in SQCD-like theories [1102.2294]; see
also recent work of [Luty, Polchinski, and Rattazzil])

e At the IR fixed point, we know what should happen to R 4. In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

~ _ ~ 3

Roi = Raa —Deu Dgl7 . T=U"M-Z7=0.  (4)
Determine R, from duality or a-maximization.
3 (pIR _ BIR
5 (RLE - RIE).
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e Upshot: Therefore, U — %J, where U,fR



The R-symmetry Current and the RG Flow (cont...)
e J may be a conserved current of the full theory or an accidental
symmetry of the IR. We will see an extreme version of this for

SQCD in the free magnetic range.

e In the case of a free magnetic phase, we have
3 2\ —;
TR = >3 (ri=5) 8 (5)
i

for the “emergent” d.o.f’s.
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Example: SQCD in the Free Magnetic Range

e Consider SU(N¢) with Ne+ 1 < Ny < 3N¢/2: this is a flow

between Gaussian fixed points

e The UV (electric) theory:
SU(Nc) SU(Ny) x SU(Ng) U(1)g

Q Nec N¢ x 1 —%Jg
Q Nec 1 x N¢ —%;

U(1)g
1 (6)

—1

e Some bilinears that we can write are c{QiQ} + EfQZQ';f What

are they in the IR?
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Example: SQCD in the Free Magnetic Range (cont...)

e We have the following IR (magnetic) theory [Seiberg]
SU(Ny — Ne) SU(Nf_)xSU(Nf) U(l)p U(1l)p

q N¢ — N¢ Ngx1 5 Ny
~ N < N N, "N,
M 1 Ne x N 2 oNe 0

f f Ny

: . ~ ~ N.. ~
e Some objects are trivial to map, e.g. QQT—JOT — NN (|q|2 — |q\2).
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Example: SQCD in the Free Magnetic Range (cont...)

e But what about J4 = QQT 4+ QQT? It is not conserved:
D?J = Trw2 . (8)

e Claim: We can follow this operator using the R multiplet.
Indeed, using the R-charge assignments in the electric table, we
find

ov — (1 3Ne eTel
U _< 2+2Nf>(QQ +QqT) (9)

e Using the R-charge assignments in the IR, we find

| ZIR — C T I ~~1‘ C -i—
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The R-current Multiplet and IR Phases of Gauge T heories

e \We have seen that the R-current multiplet gives us a handle
on a particular long (spin zero) multiplet, U.

e Question: Does it also contain some global information? En-

codes the phase of the IR theory? Is the deep IR an interacting
or a free SCFT (perhaps below some confining scale, A)7?
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The R-current Multiplet and IR Phases of Gauge
Theories (cont...)

e To understand this question, we will study (U(x)U(0)).
e But which U (and R;)? This is ambiguous.

e We will study the one defined (up to some caveats) by a-

i ation i Uv.  Uv
maximization in the deformed UV theory, (Rmvis, Ujic )-
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The R-current Multiplet and IR Phases of Gauge
Theories (cont...)

e \We will study 7;:
UVIR

(2 )4

(Ui W)U, i 1 (0)) =

(0% — 00y ;%4 . (11)

e Note that in theories without accidental symmetries, 7" >

1R
0 =7/~

e We will empirically check 75" > 7/t more generally (new in-
formation not contained in apyy > arp).
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The R-current Multiplet and IR Phases of Gauge
Theories (cont...)
o TV > rlf implies a UV “upper” bound on accidental bosonic
symmetries.

e [ his statement has potential implications for the IR phase of
the ISS theory (and DSB).

e 7}V is a quantity in the UV SCFT, although it is not intrinsically
defined in it (only defined once have in mind an R-symmetric
relevant deformation and/or R-symmetry-preserving vev).
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Defining 7g;

e \We start by using a-maximization to find the UV superconfor-
mal R-current: consider RZ",UV — be?l)jf;/—i—zi t’iJﬂ/*, where J/[{,}/*

are the full set of non-R symmetries of the UV SCFT.

3
o Taking af;,, = 3Tr (REy)" — Tr Ry, solve dydfy |y =
0, 05,8yl _ys < 0. This defines V.
e Deform the theory by turning on an R-symmetry-preserving rel-
evant deformation and/or an R-symmetry-preserving vev. Now
only {JY¥*} c {JUV*} are still conserved currents that respect
the vacuum.
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Defining ;; (cont...)

e Maximizing a over this subset yields Rgv — R,(LO)’UV—I—ZG fgfff[)}{
and UYV which descend from a corresponding pair in the unde-

Uv UV :
formed UV SCFT, (Ru,viS,U\/iS ). See [1109.3279] for a slightly
more general definition.
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SQCD

e Our procedure fixes RUY (Q) = RUY(Q) = 1- N; and ULY (Q) =

Vis
Uv 1 3N¢
UVIS (Q) - 2 2N,

e Consider Nf < 3N., and start from the free UV theory.

e Begin with Ny = N¢ and work our way up. All the subtleties
we have discussed in this talk are present in this class of theo-
ries (accidental symmetries, Goldstone bosons, interacting fixed
points etc.).

20



SQCD (cont...)

e Ny = Ne; 7V = 2N2; in the IR have a deformed moduli space

det M + BB = A?Ne with < N2 4+ 2 mesons, M, and baryons,
B, B.

e Since RIZ(M) = RIE(B) = RIX(B) = 0 and ULE(M) =

IR Vi?R / Vis \fé 5 Vis
UVis (B) = UViS (B) = —1, we have T < Ng + 2.
TV =2N?2 > N2 4+ 2 > (12)
2
° Nf = N+ 1; TgV = N;((llfjff%f - confinement without chiral

symmetry breaking, (N¢+ 1)2 mesons, M, and 2(N.-+ 1) baryons
B and B.
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SQCD (cont...)

e Have Ris(M) = 11_—2]\7NC>Rvis(B) — Rvis(g) — ]\27011_2]@70, U(M) =
+Ne +1Ne

> _n)\2
152, UB) = U(B) = 5 =2, Therefore, rjft = (Nez2)(3+2Ne)

2(Ne+1) 2(1+Ne)
and

oy Ne(1—2Ng)? o (Ne— 2)°(3+2Ne) _ ;g
T T2+ N 21+N)

(13)

e Can see that fully conserved current two-point functions have
no definite behavior along the RG flow. Therefore, a-maximization
picks out a current, U, that has nice properties.
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SQCD (cont...)

_UV _— 2Ne(Ne—1)2

° Nf Nq~+2, confining description breaks down; T = Not?
3 2
while (CJO“‘C — SN 10]@;24%4_36, and so conjecture would be vi-

olated in a hypothetical confining phase.

e Luckily, correct description is free magnetic with RIE(M) =

IR — pIR _Nc IR — 3Nc IR —
2(1- R ) RUEo) = RIE@ = §: and U () = 2-3, UJE() =
IR —_ 3NC
Usic (@) = =1+ 5 T herefore:
Ne(N;—3N.)?2  (3N;— N.)(3N.—2N¢)?
UV c( f c) >( f C)( C f) _TIR. (14)

v 2N 2N v
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SQCD (cont...)

e The above expressions are valid for N, + 1 < Ny < 3N¢/2.
The inequality holds up to Ny~ 1.79N, (where the theory flows
to an interacting conformal fixed point, and the above expres-
sions don't apply). Comes close to predicting onset of conformal
window.

e In conformal window, 3N./2 < Nf < 3N, trivially have (from
assumed lack of accidental symmetries)

5V >0 =i, (15)

e Can do some more complicated tests of conformal window.
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SQCD (cont...)

e Easy to generalize the above discussion to SO(N.) and Sp(N¢)
gauge groups

e Also other more exotic s-confining theories; SCFTs with acci-

dental symmetries; NN = 2 SYM; Kutasov and Brodie theories;
See [1109.3279] for details.
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The IR Phase of ISS and Constraints on DSB

e Intriligator, Seiberg, and Shenker consider an SU(2) gauge
theory with a single field, @Q, in the isospin 3/2 representation.

e [ hey conjectured that the IR theory at the origin is described

by a confined u = Q4 field (classically, the Kahler potential
is singular at the origin); indeed, since RLUY(Q) = 3/5 and

RUY (u) = 12/5, the U(1)g and U(1)3 anomalies match.
e If the confining description is correct, then, upon deforming the
theory by W = A\u, we would find a simple model of (dynamical)
SUSY breaking. In this vacuum, there would be a preserved R-
symmetry that is a mixture of the accidental non-R symmetry
under which u transforms and Rjs.
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The IR Phase of ISS and Constraints on DSB (cont...)

e Other techniques have since pointed to the opposite conclusion
[Intriligator], [Poppitz and Unsal], [Vartanov]

e Our criterion also suggests this is the case. Indeed, UUV(Q) =

1 IR VIS
—15> Uyie(u) = 13 and so
1 i 169
uv I R,confining
= ’ = 16
U T oy U 25 (16)

e Conjecture formalizes the intuition that the theory is too weak
to produce confined d.o.f's (the 1-loop beta fnisb=6—-5=1).

e Can also check that our procedure is consistent with better un-
derstood misleading anomaly matchings [Brodie, Cho, Intriligator].
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Emergent SUSY

e The statement 7" > 7/ has potential consequences for emer-
gent SUSY.

e Indeed, suppose we add a probe deformation 6Ly = m2UYV|.
In the IR, at leading order in the deformation, we have 0L;p =
m2UTE| It immediately follows that §L;p < 6Ly, and so SUSY
breaking can be suppressed (up to some caveats).

e [ his idea generalizes the reasoning in the specific example of
[Csaki, Randall, and Terningl. They added

1 3N,
sLyy =mAUYY | = (-2 .
Uy =m | ( 2+2Nf

) (QQT+4agh)  amn
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Emergent SUSY (cont...)

e Recall that this flows to

. 2 . 3NC »'- ~~-‘- . . 3NC 1-
OLIR =m ((1 2Nf> (qq —I-qq) (2 Nf>MM (18)

e For Ny = 3N./2, Ut = 0. If we identify m2UYV| with the stop
mass, we find that the leading order mass vanishes in the IR.
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How Universal is Emergent SUSY?

e \We wish to study
5Ly = m2J +mZUYV| 4+ m3 .y, (19)

where these soft terms correspond to symmetries of the UV
SCFT, and find out how generic 6L;p = 0 is (the J% are sym-
metries that are conserved throughout the RG flow).

e Clearly, we are interested in theories for which Ut — 0 (i.e.,
the most extreme manifestation of 7/V > 7{#). But we know
we should be weary of terms proportional to J¢.

30



How Universal is Emergent SUSY? (cont...)

e Theorem: A necessary and sufficient condition for the J, — 0
in the deep IR is that all the 't Hooft anomalies involving these
currents vanish: TrJuJyJe = TrRJ,J, = TrR2J, = TrJ, = 0.

e The proof follows from the fact that U/f — 0, and so R/ =
R{LR. Unitarity (in the guise of positivity of the IR current two
point functions) then provides the non-trivial (sufficient) direc-
tion of the theorem.

e Corollary: In asymptotically free theories with simple gauge
group and W = 0, there will generically be soft terms remaining
in the IR unless we impose some discrete symmetries (and non-
abelian flavor symmetries) on the UV soft terms.
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How Universal is Emergent SUSY? (cont...)

e For small perturbations of such theories (i.e, small §W and
additional weak gauging), the result still holds at leading order
in the perturbations.

e Remarkably, this result follows from a simple exercise in linear

algebra and does not depend on detailed knowledge of strong
dynamics.

e Of course, there are many ways to get around this result:
important contributions from W, interacting UV fixed point, no
RG-conserved currents, etc.
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Conclusions

e \We have seen that the (R,,U) multiplets contain a great deal
of physics.

e \We can potentially use this pair to learn things about emergent
symmetries and DSB.

e \We may also learn about the role that certain theories can and
cannot play in particle physics!
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