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Overview

• Particle physics motivation

• RG generalities.

• R-symmetry, the R-current multiplet, the U multiplet, and the
RG flow.

• A simple example.

• Correlation functions of the U multiplet and IR phases.

• Upper bound on emergent bosonic symmetry.

• Lower bound on emergent fermionic symmetry.

• Universality of emergent SUSY.
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Particle physics motivation

• Based on LHC results, weakly-coupled Higgs looks likely... )
SUSY?

• If SUSY exists, then it is broken, and need hidden sector.
Should have some type of R-symmetry (Nelson-Seiberg).

• If SUSY is broken dynamically, there will be some type of strong
coupling involved ) study general non-perturbative aspects of
R-symmetric theories.

• Also, we frequently have some emergent bosonic symmetries in
such theories (ISS, etc.) ) Constraints on emergent symmetries
should lead to constraints on DSB.
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Particle physics motivation (cont...)

• ... But sparticles still haven’t been observed. If SUSY is to
remain “natural,” we need light stops. This suggests a sector in
which SUSY breaking is suppressed.

• We will suggest a new non-perturbative RG rule (an inequality
in the spirit of the a-theorem) applicable in a broad class of
R-symmetric theories. It will be related to the emergence of
accidental symmetries (both bosonic and fermionic) in the IR.
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RG Generalities

• Under rather general assumptions, UV-complete QFTs can be
understood as interpolations between UV and IR scale-invariant
limits (may also be gapped and hence empty in IR).

• Given well-defined operators and correlation functions of the
UV theory, can we say something about the corresponding ob-
jects in the IR?

• What are the emergent symmetries of the IR fixed points?
What are the broken symmetries?

• In general, new internal and space-time symmetries. What are
they? How do we get a handle on them?
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RG Generalities (cont...)

• Non-perturbative dynamics along the RG flow make these ques-
tions hard to answer.

• We will specialize to four-dimensional R-symmetric theories.

• As we will see SUSY, and, in particular R-symmetry give us
strong handles to use to answer a lot of these questions in con-
trolled settings.
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The R-symmetry Current

• Since [R, Q] ⇠ Q, {Q, Q̄} ⇠ P , the R-current transforms in a
multiplet with Sµ↵ and Tµ⌫.

D̄↵̇R↵̇↵ = �↵ , D↵�↵ � D̄↵̇�̄↵̇ = D̄↵̇�↵ = 0 . (1)

When �↵ = 0, this is the superconformal R-symmetry.

• There is an ambiguity in the above equation under R↵↵̇ !
R↵↵̇ +

⇥

D↵, D̄↵̇
⇤

J and �↵ ! �↵ + 3
2D̄2D↵J for conserved J, i.e.,

D̄2J = 0. This a↵ects the supercurrent and stress tensor through
improvements.
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The R-symmetry Current (cont...)

• For the theories we will consider, can write

�↵ = D̄2D↵U , (2)

for a well-defined (and away from the endpoints of the RG flow,
non-conserved) U .

• Solving the above equations in the UV of an asymptotically
free theory, we find

RUV
↵↵̇ =

X

i

⇣

2D↵�iD̄↵̇�̄i � ri[D↵, D̄↵̇]�i�̄
i
⌘

,

UUV = �
3

2

X

i

✓

ri �
2

3

◆

�̄i�i . (3)

More generally: UUV
µ = 3

2

⇣

RUV
µ � R̃UV

µ

⌘

.
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The R-symmetry Current and the RG Flow

• Idea: Study R and U along the flow.

• Assumption: The UV and IR fixed points are SCFTs (this
can be made rigorous in SQCD-like theories [1102.2294]; see
also recent work of [Luty, Polchinski, and Rattazzi])

• At the IR fixed point, we know what should happen to R↵↵̇. In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

R̃↵↵̇ = RIR
↵↵̇ � [D↵, D̄↵̇]J , Ũ = UIR �

3

2
J = 0 . (4)

Determine R̃↵↵̇ from duality or a-maximization.

• Upshot: Therefore, U ! 3
2J, where UIR

µ = 3
2

⇣

RIR
µ � R̃IR

µ

⌘

.
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The R-symmetry Current and the RG Flow (cont...)

• J may be a conserved current of the full theory or an accidental
symmetry of the IR. We will see an extreme version of this for
SQCD in the free magnetic range.

• In the case of a free magnetic phase, we have

UIR = �
3

2

X

i

✓

ri �
2

3

◆

�̄i�i , (5)

for the “emergent” d.o.f’s.
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Example: SQCD in the Free Magnetic Range

• Consider SU(Nc) with Nc + 1 < Nf  3Nc/2: this is a flow
between Gaussian fixed points

• The UV (electric) theory:

SU(Nc) SU(Nf)⇥ SU(Nf) U(1)R U(1)B

Q Nc Nf ⇥ 1 1� Nc
Nf

1

Q̃ N̄c 1⇥ N̄f 1� Nc
Nf

�1

(6)

• Some bilinears that we can write are c
j
iQ

iQ
†
j + c̃

j
i Q̃

iQ̃
†
j. What

are they in the IR?
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Example: SQCD in the Free Magnetic Range (cont...)

• We have the following IR (magnetic) theory [Seiberg]

SU(Nf �Nc) SU(Nf)⇥ SU(Nf) U(1)R U(1)B

q Nf �Nc N̄f ⇥ 1 Nc
Nf

Nc
Nf�Nc

q̃ N̄f � N̄c 1⇥ N̄f
Nc
Nf

� Nc
Nf�Nc

M 1 Nf ⇥Nf 2� 2Nc
Nf

0
(7)

• Some objects are trivial to map, e.g. QQ†�Q̃Q̃† �! Nc
Nf�Nc

⇣

|q|2 � |q̃|2
⌘

.
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Example: SQCD in the Free Magnetic Range (cont...)

• But what about JA = QQ† + Q̃Q̃†? It is not conserved:

D̄2JA = TrW2
↵ . (8)

• Claim: We can follow this operator using the R multiplet.
Indeed, using the R-charge assignments in the electric table, we
find

UUV =

 

�
1

2
+

3Nc

2Nf

!

⇣

QQ† + Q̃Q̃†
⌘

(9)

• Using the R-charge assignments in the IR, we find

UIR =

 

1�
3Nc

2Nf

!

⇣

qq† + q̃q̃†
⌘

�
 

2�
3Nc

Nf

!

MM† (10)
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The R-current Multiplet and IR Phases of Gauge Theories

• We have seen that the R-current multiplet gives us a handle
on a particular long (spin zero) multiplet, U .

• Question: Does it also contain some global information? En-
codes the phase of the IR theory? Is the deep IR an interacting
or a free SCFT (perhaps below some confining scale, ⇤)?
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• To understand this question, we will study hU(x)U(0)i.

• But which U (and Rµ)? This is ambiguous.

• We will study the one defined (up to some caveats) by a-
maximization in the deformed UV theory, (RUV

µ,vis, U
UV
vis ).
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• We will study ⌧U :

hUUV,IR
µ,vis (x)UUV,IR

⌫,vis (0)i =
⌧

UV,IR
U

(2⇡)4

⇣

@2⌘µ⌫ � @µ@⌫

⌘ 1

x4 . (11)

• Note that in theories without accidental symmetries, ⌧UV
U >

0 = ⌧IR
U .

• We will empirically check ⌧UV
U > ⌧ IR

U more generally (new in-
formation not contained in aUV > aIR).
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• ⌧UV
U > ⌧IR

U implies a UV “upper” bound on accidental bosonic
symmetries.

• This statement has potential implications for the IR phase of
the ISS theory (and DSB).

• ⌧UV
U is a quantity in the UV SCFT, although it is not intrinsically

defined in it (only defined once have in mind an R-symmetric
relevant deformation and/or R-symmetry-preserving vev).
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Defining ⌧U

• We start by using a-maximization to find the UV superconfor-
mal R-current; consider Rt⇤

µ,UV = R(0)⇤
µ,UV +

P

i tiJUV ⇤
µ,i , where JUV ⇤

µ,i

are the full set of non-R symmetries of the UV SCFT.

• Taking ãt
UV = 3Tr

⇣

Rt⇤
UV

⌘3
� Tr Rt⇤

UV , solve @tiã
t
UV |ti=ti⇤

=

0, @2
titj

ãt
UV |ti,j=t

i,j
⇤

< 0. This defines R̃UV
µ .

• Deform the theory by turning on an R-symmetry-preserving rel-
evant deformation and/or an R-symmetry-preserving vev. Now
only

n

ĴUV ⇤
µ,a

o

⇢
n

JUV ⇤
µ,i

o

are still conserved currents that respect
the vacuum.
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Defining ⌧U (cont...)

• Maximizing ã over this subset yields RUV
µ = R(0),UV

µ +
P

a t̂a⇤Ĵ
UV
µ,a

and UUV which descend from a corresponding pair in the unde-
formed UV SCFT, (RUV

µ,vis, U
UV
vis ). See [1109.3279] for a slightly

more general definition.
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SQCD

• Our procedure fixes RUV
vis (Q) = RUV

vis (Q̃) = 1�Nc
Nf

and UUV
vis (Q) =

UUV
vis (Q̃) = 1

2 �
3Nc
2Nf

.

• Consider Nf < 3Nc, and start from the free UV theory.

• Begin with Nf = Nc and work our way up. All the subtleties
we have discussed in this talk are present in this class of theo-
ries (accidental symmetries, Goldstone bosons, interacting fixed
points etc.).
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SQCD (cont...)

• Nf = Nc; ⌧UV
U = 2N2

c ; in the IR have a deformed moduli space
detM + BB̃ = ⇤2Nc with < N2

c + 2 mesons, M , and baryons,
B, B̃.

• Since RIR
vis(M) = RIR

vis(B) = RIR
vis(B̃) = 0 and UIR

vis (M) =
UIR

vis (B) = UIR
vis (B̃) = �1, we have ⌧IR

U < N2
c + 2.

⌧UV
U = 2N2

c > N2
c + 2 > ⌧IR

U . (12)

• Nf = Nc + 1; ⌧UV
U = Nc(1�2Nc)2

2(1+Nc)
; confinement without chiral

symmetry breaking, (Nc+1)2 mesons, M , and 2(Nc+1) baryons
B and B̃.
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SQCD (cont...)

• Have Rvis(M) = 1�2Nc
1+Nc

,Rvis(B) = Rvis(B̃) = Nc
2

1�2Nc
1+Nc

, U(M) =

�1+ 3
Nc+1, U(B) = U(B̃) = Nc�2

2(Nc+1). Therefore, ⌧IR
U = (Nc�2)2(3+2Nc)

2(1+Nc)
and

⌧UV
U =

Nc(1� 2Nc)2

2(1 + Nc)
>

(Nc � 2)2(3 + 2Nc)

2(1 + Nc)
= ⌧IR

U . (13)

• Can see that fully conserved current two-point functions have
no definite behavior along the RG flow. Therefore, a-maximization
picks out a current, U , that has nice properties.
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SQCD (cont...)

• Nf = Nc+2, confining description breaks down; ⌧UV
U = 2Nc(Nc�1)2

Nc+2

while ⌧conf
U = 5N3

c �10N2
c �4Nc+36

Nc+2 , and so conjecture would be vi-
olated in a hypothetical confining phase.

• Luckily, correct description is free magnetic with RIR
vis(M) =

2
✓

1� Nc
Nf

◆

,RIR
vis(q) = RIR

vis(q̃) = Nc
Nf

and UIR
vis (M) = 2�3Nc

Nf
, UIR

vis (q) =

UIR
vis (q̃) = �1 + 3Nc

2Nf
. Therefore:

⌧UV
U =

Nc(Nf � 3Nc)2

2Nf
>

(3Nf �Nc)(3Nc � 2Nf)
2

2Nf
= ⌧IR

U . (14)
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SQCD (cont...)

• The above expressions are valid for Nc + 1 < Nf  3Nc/2.
The inequality holds up to Nf ⇠ 1.79Nc (where the theory flows
to an interacting conformal fixed point, and the above expres-
sions don’t apply). Comes close to predicting onset of conformal
window.

• In conformal window, 3Nc/2 < Nf < 3Nc, trivially have (from
assumed lack of accidental symmetries)

⌧UV
U > 0 = ⌧IR

U . (15)

• Can do some more complicated tests of conformal window.
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SQCD (cont...)

• Easy to generalize the above discussion to SO(Nc) and Sp(Nc)
gauge groups

• Also other more exotic s-confining theories; SCFTs with acci-
dental symmetries; N = 2 SYM; Kutasov and Brodie theories;
See [1109.3279] for details.
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The IR Phase of ISS and Constraints on DSB

• Intriligator, Seiberg, and Shenker consider an SU(2) gauge
theory with a single field, Q, in the isospin 3/2 representation.

• They conjectured that the IR theory at the origin is described
by a confined u = Q4 field (classically, the Kähler potential
is singular at the origin); indeed, since RUV

vis (Q) = 3/5 and
RUV

vis (u) = 12/5, the U(1)R and U(1)3R anomalies match.

• If the confining description is correct, then, upon deforming the
theory by W = �u, we would find a simple model of (dynamical)
SUSY breaking. In this vacuum, there would be a preserved R-
symmetry that is a mixture of the accidental non-R symmetry
under which u transforms and Rvis.
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The IR Phase of ISS and Constraints on DSB (cont...)

• Other techniques have since pointed to the opposite conclusion
[Intriligator], [Poppitz and Unsal], [Vartanov]

• Our criterion also suggests this is the case. Indeed, UUV
vis (Q) =

� 1
10, UIR

vis (u) = 13
5 and so

⌧UV
U =

1

25
, ⌧

IR,confining
U =

169

25
, (16)

• Conjecture formalizes the intuition that the theory is too weak
to produce confined d.o.f’s (the 1-loop beta fn is b = 6�5 = 1).

• Can also check that our procedure is consistent with better un-
derstood misleading anomaly matchings [Brodie, Cho, Intriligator].
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Emergent SUSY

• The statement ⌧UV
U > ⌧IR

U has potential consequences for emer-
gent SUSY.

• Indeed, suppose we add a probe deformation �LUV = m2UUV |.
In the IR, at leading order in the deformation, we have �LIR =
m2UIR|. It immediately follows that �LIR < �LUV , and so SUSY
breaking can be suppressed (up to some caveats).

• This idea generalizes the reasoning in the specific example of
[Csaki, Randall, and Terning]. They added

�LUV = m2UUV | =
 

�
1

2
+

3Nc

2Nf

!

⇣

QQ† + Q̃Q̃†
⌘

(17)
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Emergent SUSY (cont...)

• Recall that this flows to

�LIR = m2
  

1�
3Nc

2Nf

!

⇣

qq† + q̃q̃†
⌘

�
 

2�
3Nc

Nf

!

MM†
!

(18)

• For Nf = 3Nc/2, UIR = 0. If we identify m2UUV | with the stop
mass, we find that the leading order mass vanishes in the IR.
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How Universal is Emergent SUSY?

• We wish to study

�LUV = m2
aĴa|+ m2

UUUV |+ m2
AJA| , (19)

where these soft terms correspond to symmetries of the UV
SCFT, and find out how generic �LIR = 0 is (the Ĵa are sym-
metries that are conserved throughout the RG flow).

• Clearly, we are interested in theories for which UIR ! 0 (i.e.,
the most extreme manifestation of ⌧UV

U > ⌧IR
U ). But we know

we should be weary of terms proportional to Ĵa.
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How Universal is Emergent SUSY? (cont...)

• Theorem: A necessary and su�cient condition for the Ĵa ! 0
in the deep IR is that all the ’t Hooft anomalies involving these
currents vanish: TrĴaĴbĴc = TrRĴaĴb = TrR2Ĵa = TrĴa = 0.

• The proof follows from the fact that UIR ! 0, and so RIR
µ =

R̃IR
µ . Unitarity (in the guise of positivity of the IR current two

point functions) then provides the non-trivial (su�cient) direc-
tion of the theorem.

• Corollary: In asymptotically free theories with simple gauge
group and W = 0, there will generically be soft terms remaining
in the IR unless we impose some discrete symmetries (and non-
abelian flavor symmetries) on the UV soft terms.
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How Universal is Emergent SUSY? (cont...)

• For small perturbations of such theories (i.e, small �W and
additional weak gauging), the result still holds at leading order
in the perturbations.

• Remarkably, this result follows from a simple exercise in linear
algebra and does not depend on detailed knowledge of strong
dynamics.

• Of course, there are many ways to get around this result:
important contributions from W , interacting UV fixed point, no
RG-conserved currents, etc.
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Conclusions

• We have seen that the (Rµ, U) multiplets contain a great deal
of physics.

• We can potentially use this pair to learn things about emergent
symmetries and DSB.

• We may also learn about the role that certain theories can and
cannot play in particle physics!
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