Planck 2012 Warsaw, May 30th 2012

Phenomenology of the flavour messenger sector

Lorenzo Calibbi Max-Planck-Institut für Physik, Munich

MAX-PLANCK-GESELLSCHAFT

based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arXiv:1203.1489 [hep-ph] and arXiv:1204.1275 [hep-ph]

Motivations

Hierarchy of SM fermion masses and mixing

Up quarks

CKM matrix

A dynamical explanation?

- SM fermions charged under a new horizontal symmetry G_F
- G_F forbids Yukawa couplings at the renormalisable level
- $\mathit{G}_{\!F}$ spontanously broken by "flavons" vevs $\langle \phi_I
 angle$
- Yukawas arise as higher dimensional operators

Froggatt Nielsen '79 Leurer Seiberg Nir '92, '93

$$W_{yuk} = y_{ij}^U q_i u_j^c h_u + y_{ij}^D q_i d_j^c h_d$$

$$y_{ij}^{U,D} \sim \prod_{I} \left(\frac{\langle \phi_I \rangle}{M}\right)^{n_{I,ij}^{U,D}}$$

 $\phi_I < M \implies \epsilon_I \equiv \langle \phi_I \rangle / M = n_{I,ij}^{U,D}$ dictated by the symmetry

What is G_F ?

G_F abelian or non-abelian, continous or discrete

U(1), U(1)xU(1), SU(2), SU(3), SO(3), A₄...

Froggatt Nielsen '79; Leurer Seiberg Nir '92, '93; Ibanez Ross '94; Dudas Pokorski Savoy '95; Binetruy Lavignac Ramond '96; Barbieri Dvali Hall '95; Pomarol Tommasini '95; King Ross '01; Altarelli Feruglio '05...

U(1) example Chankowski et al. '05 $\implies \begin{array}{c} y_{ij}^{U} \sim \epsilon^{q_i + u_j} \\ y_{ij}^{D} \sim \epsilon^{q_i + d_j} \end{array} \quad \epsilon = \phi/M \approx 0.23$ $q_{1,2,3}$: (3,2,0) $u_{1,2,3}^c$: (3,2,0) ϕ : -1 $d_{1,2,3}^c$: (2,1,1) $Y_u \sim \begin{pmatrix} \epsilon^3 & \epsilon^3 & \epsilon^3 \\ \epsilon^5 & \epsilon^4 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & \mathbf{1} \end{pmatrix}$ $Y_d \sim \begin{pmatrix} \epsilon^3 & \epsilon^1 & \epsilon^4 \\ \epsilon^4 & \epsilon^3 & \epsilon^3 \\ \epsilon^2 & \epsilon^4 & \epsilon^4 \end{pmatrix}$ What is *M*?

- If $M < M_{Pl}$ new degrees of freedom: "flavour messengers"
- They are in vector-like reprs. of the SM group and G_{F} -charged
- Two possibilities: heavy fermions $(R_P +)$ or heavy scalars $(R_P -)$

- If $M < M_{Pl}$ new degrees of freedom: "flavour messengers"
- They are in vector-like reprs. of the SM group and G_F -charged
- Two possibilities: heavy fermions $(R_P +)$ or heavy scalars $(R_P -)$

Planck 2012

- If $M < M_{Pl}$ new degrees of freedom: "flavour messengers"
- They are in vector-like reprs. of the SM group and G_{F} -charged
- Two possibilities: heavy fermions $(R_P +)$ or heavy scalars $(R_P -)$

"Higgs" UV completion (FUVC)

- If $M < M_{Pl}$ new degrees of freedom: "flavour messengers"
- They are in vector-like reprs. of the SM group and G_{F} -charged
- Two possibilities: heavy fermions $(R_P +)$ or heavy scalars $(R_P -)$

"Higgs" UV completion (FUVC)

How light can the messenger sector be?

By construction always present couplings (with O(1) coeffs.) of the form:

Flavour conserving \square Flavour violating in the mass basis: $d_{Li} \rightarrow d_{Li} + \sum_{j \neq i} \theta_{ij}^{DL} d_{Lj}$

Planck 2012

How light can the messenger sector be?

Process	Relevant operators	Bound on c/TeV^2		
		Re	Im	
	$(\overline{s}_X \gamma^\mu d_X)(\overline{s}_X \gamma^\mu d_X)$	$9.0 imes 10^{-7}$	3.4×10^{-9}	
$\Delta m_K; \epsilon_K$	$(\overline{s}_L \gamma^\mu d_L)(\overline{s}_R \gamma^\mu d_R)$	1.9×10^{-7}	7.2×10^{-10}	
	$(\overline{s}_L d_R)(\overline{s}_R d_L)$	4.7×10^{-9}	1.8×10^{-11}	
	$(\overline{c}_X \gamma^\mu u_X)(\overline{c}_X \gamma^\mu u_X)$	4.7×10^{-7}	$1.3 \times 10^{-7} \ [3.8 \times 10^{-9}]$	
$\Delta m_D; q/p _D, A_{\Gamma}$	$(\overline{c}_L \gamma^\mu u_L)(\overline{c}_R \gamma^\mu u_R)$	$7.4 imes 10^{-7}$	$2.1 \times 10^{-7} \ [5.9 \times 10^{-9}]$	
	$(\overline{c}_L u_R)(\overline{c}_R u_L)$	4.1×10^{-8}	$1.1 \times 10^{-8} [3.3 \times 10^{-10}]$	
	$(\overline{b}_X \gamma^\mu d_X) (\overline{b}_X \gamma^\mu d_X)$	2.9×10^{-6}	2.6×10^{-6}	
$\Delta m_{B_d}; S_{\psi K_S}$	$(\overline{b}_L \gamma^\mu d_L) (\overline{b}_R \gamma^\mu d_R)$	4.8×10^{-6}	4.3×10^{-6}	
	$(\overline{b}_L d_R)(\overline{b}_R d_L)$	4.2×10^{-7}	3.8×10^{-7}	
	$(\overline{b}_X \gamma^\mu s_X) (\overline{b}_X \gamma^\mu s_X)$	$6.7 imes 10^{-5}$	$5.7 \times 10^{-5} \ [4.1 \times 10^{-6}]$	
$\Delta m_{B_s}; S_{\psi\phi}$	$(\overline{b}_L \gamma^\mu s_L) (\overline{b}_R \gamma^\mu s_R)$	$1.1 imes 10^{-4}$	$9.4 \times 10^{-5} \ [6.7 \times 10^{-6}]$	
	$(\overline{b}_L s_R)(\overline{b}_R s_L)$	9.7×10^{-6}	$8.2 \times 10^{-6} \ [5.8 \times 10^{-7}]$	
$\mu ightarrow e\gamma$	$\overline{\mu}_{\mathbf{v}}\sigma^{\mu\nu}e_{\mathbf{v}}F_{\mu\nu}$	2.9×10^{-10} [5.9 × 10 ⁻¹¹]		
	$i = \Lambda^{-1} = \mu \nu$	2.5 / 10		
$\mu \rightarrow eee$	$(\overline{\mu}_X \gamma^\mu e_X)(\overline{e}_X \gamma^\mu e_X)$	$2.3 \times 10^{-5} \ [2.3 \times 10^{-7}]$		
	$(\overline{\mu}_X e_Y)(\overline{e}_Y e_X)$	$6.5 \times 10^{-5} \ [6.5 \times 10^{-7}]$		

Planck 2012

How light can the messenger sector be?

Bounds on <i>M</i> (in TeV):		CF	РС	L		CPV	
$K - \overline{K}$	6	e^{DL}_{12} ϵ ϵ ϵ 0	$\begin{array}{c} \theta_{12}^{DR} \\ 0 \\ \epsilon \\ 1 \\ 1 \end{array}$	HUV 19 3,40 4,90 42	$\begin{array}{c c} C & HUVC^{*} \\ \hline & 310 \\ 0 & 54,000 \\ 0 & 80,000 \\ & 680 \\ \hline \end{array}$	FUVC 19 19 42 42	FUVC* 310 310 680 680
$D-\overline{D}$	$\begin{array}{c} \theta_{12}^{UL} \\ \epsilon \\ \epsilon \\ \epsilon \\ 0 \end{array}$	$\begin{array}{c} \theta_{12}^{UR} \\ 0 \\ \epsilon \\ 1 \\ 1 \end{array}$	HU 1, 1,	JVC 27 100 700 58	HUVC* 51 [300] 2,200 [13,000 3,200 [19,000 110 [650]	FUV0 27 0] 27 0] 58 58	$\begin{array}{c c} FUVC^{*} \\ \hline 51 & [300] \\ 51 & [300] \\ 110 & [650] \\ 110 & [650] \\ \end{array}$
$\implies M \gtrsim 20 \text{ TeV}$]	(<i>M</i>	$l \gtrsim$	O(1)	TeV nor	n-abeli	an symm

Still possible: large effects in LFV decays, $B_{d,s}$ mixing and decays, etc.

Planck 2012

Do ultra-heavy messengers still induce FV effects?

The messenger sector can still interfere with SUSY breaking and affect the sfermion masses

Even if sfermions are universal at M_{SUSY} , if $M < M_{SUSY}$:

$$\tilde{m}_{ij}^2(M_S) = \begin{pmatrix} \tilde{m}_0^2 & 0\\ 0 & \tilde{m}_0^2 \end{pmatrix} \qquad \Longrightarrow \qquad \tilde{m}_{ij}^2(M) = \begin{pmatrix} \tilde{m}_0^2 + \Delta \tilde{m}_{11}^2 & \Delta \tilde{m}_{12}^2\\ \Delta \tilde{m}_{21}^2 & \tilde{m}_0^2 + \Delta \tilde{m}_{22}^2 \end{pmatrix}$$

universality radiatively broken by the presence of messengers cf. Hall Kostelecky Raby '86

At low energy (in the SCKM basis): $\tilde{m}_{12}^2 \approx \Delta \tilde{m}_{12}^2 + \left(\Delta \tilde{m}_{22}^2 - \Delta \tilde{m}_{11}^2\right) \theta_{12}$

Estimate (abelian case):

$$\tilde{m}_{12}^2 \approx \left(\Delta \tilde{m}_{22}^2 - \Delta \tilde{m}_{11}^2\right) \theta_{12} \approx \theta_{12} \frac{\tilde{m}_0^2}{16\pi^2} 10 \log \frac{M_S}{M}$$

Non-abelian: additional suppression from correlated coefficients

RG effect as sizeable as the tree-level \tilde{m}_{ij}^2 expected by the flavour symm.!

Constraints on light quark rotations

rotation angle	$M_S/M = 10^8$		$M_S/M = 10$		
$\theta_{12}^{DL}, \theta_{12}^{DR}$	7.9×10^{-2} [Re]	$1.0 \times 10^{-2} \; [\text{Im}]$	6.3×10^{-1} [Re]	$8.2 \times 10^{-2} \; [\text{Im}]$	
$\langle \theta^D_{12} \rangle$	$1.6 \times 10^{-3} \; [\text{Re}]$	$2.2 \times 10^{-4} \text{ [Im]}$	$1.3 \times 10^{-2} \; [\text{Re}]$	1.8×10^{-3} [Im]	
$\theta_{12}^{UL}, \theta_{12}^{UR}$	8.6×10^{-2} [Re]	$5.1 \times 10^{-2} \; [\text{Im}]$	$6.9 \times 10^{-1} \; [\text{Re}]$	$4.1\times 10^{-1}~[\mathrm{Im}]$	
$\langle heta_{12}^U angle$	5.3×10^{-3} [Re]	$3.4 \times 10^{-3} \; [\mathrm{Im}]$	4.3×10^{-2} [Re]	2.7×10^{-2} [Im]	
$\theta_{13}^{DL}, \theta_{13}^{DR}$	2.4×10^{-1} [Re]	$5.1 \times 10^{-1} \; [\text{Im}]$		-	
$\langle heta_{13}^D angle$	3.6×10^{-2} [Re]	$1.5 \times 10^{-2} \; [\text{Im}]$	2.9×10^{-1} [Re]	$1.2 \times 10^{-1} \; [\text{Im}]$	
$ heta_{12}^{EL}$	2.4×10^{-3}	$[4.9 \times 10^{-4}]$	$1.9 imes 10^{-2}$	$[3.9\times10^{-3}]$	
θ_{12}^{ER}	$2.0 imes 10^{-2}$	$[3.9\times10^{-3}]$	$1.6 imes 10^{-1}$	$[3.2\times10^{-2}]$	
$\langle \theta^E_{12} \rangle$	$1.5 imes 10^{-3}$	$[3.3 \times 10^{-4}]$	1.2×10^{-2}	$[2.6 \times 10^{-3}]$	

 $\langle \theta_{12}^D \rangle \equiv \sqrt{\theta_{12}^{DL} \theta_{12}^{DR}}$

SUSY masses at 1 TeV

(additional suppressions in non-abelian models)

Even assuming universality abelian models with $M < M_{SUSY}$ are in trouble

- Horizontal symmetries popular explanation of the SM flavour structure
- Flavour models can be UV completed with heavy "Fermion" and/or "Higgs" messengers
- The messenger sector can have important consequences for Yukawa couplings (textures) and sfermion masses
- FCNC processes directly induced by messenger exchange constrain the mass scale, M > 20 TeV (abelian symm.)
- Non-abelian messengers can be as light as the TeV scale
- Perturbativity up to the GUT/Planck scale typically requires $M > 10^{10}$ GeV
- The running of the soft-masses is affected by messengers for $M < M_{SUSY}$

Universality radiatively broken by messengers

Sfermion off-diagonal entries of the size expected at tree-level

Serdecznie dziękuję!

Additional slides

Tree-level vs. radiative effects on sfermion masses

Off-diagonal entries from spurion analysis (U(1) example):

$$\tilde{m}_{ij}^2 \sim \tilde{m}^2 \left(\frac{\phi}{M}\right)^{q_j - q_i}$$

Instead, considering messengers (with $M \leq M_{SUSY}$):

$$\tilde{m}^2 \left(a_i q_i^{\dagger} q_i + b_{\alpha} Q_{\alpha}^{\dagger} Q_{\alpha} + c_{i\alpha} q_i^{\dagger} Q_{\alpha} + d_{\beta} H_{\beta}^{\dagger} H_{\beta} + \ldots + \mathcal{O}(\phi/M_S) \right)$$

Running effects (U(1) HUVC example):

$$\begin{split} (m_{\tilde{d}}^2)_{22} &- (m_{\tilde{d}}^2)_{11} \approx \frac{12}{16\pi^2} \tilde{m}_0^2 \left[(\lambda^{d\dagger} \lambda^d)_{11} - (\lambda^{d\dagger} \lambda^d)_{22} \right] \log \frac{M_S}{M}, \\ (m_{\tilde{q}}^2)_{22} &- (m_{\tilde{q}}^2)_{11} \approx \frac{6}{16\pi^2} \tilde{m}_0^2 \left[(\lambda^{u\dagger} \lambda^u)_{11} - (\lambda^{u\dagger} \lambda^u)_{22} + (\lambda^{d\dagger} \lambda^d)_{11} - (\lambda^{d\dagger} \lambda^d)_{22} \right] \log \frac{M_S}{M}. \end{split}$$

$$\Delta_{12} \sim \phi_2 \phi_2 \sim y_{22}$$
$$\Delta_{i3} \sim \phi_3 \phi_3 \sim y_{33}$$

(SU(3), U(2)...)

Mass splitting	Suppression factor in $SU(3)_F$	Suppression factor in $U(2)_F$
Δ_{13}^U	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$
Δ_{23}^U	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$
Δ_{12}^U	ϵ^4	ϵ^4
Δ_{13}^D	$\epsilon^3 \tan eta$	$\mathcal{O}\left(1 ight)$
Δ^D_{23}	$\epsilon^3 aneta$	$\mathcal{O}\left(1 ight)$
Δ_{12}^D	$\epsilon^5 aneta$	$\epsilon^5 aneta$

Table 2: Additional suppression factors of diagonal sfermion mass splittings $\Delta_{ij} \equiv \tilde{m}_{ii}^2 - \tilde{m}_{jj}^2$ in simple non-abelian models.

L and R in fundamentals:

$$\Delta_{12} \sim \phi_2 \phi_2 \sim y_{22}^2$$
$$\Delta_{i3} \sim \phi_3 \phi_3 \sim y_{33}^2$$

(SO(3), A₄...)

Larger suppr. But in the singlet sector no suppression \rightarrow U(1) results