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UPMNS
what matters is the relative 
orientation  

UPMNS parametrized in terms of 3 mixing angles and 1 phase  
(2 more phases are not measurable in neutrino oscillations) 
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2011/2012 breakthrough 
from LBL experiments searching for  νμ -> νe conversion   

€ 

P ν µ →ν e( ) = sin2ϑ 23 sin
2 2ϑ13 sin

2 Δm32
2 L

4E
+ ...

MINOS: muon neutrino beam produced 
at Fermilab [E=3 GeV] sent to 
Soudan Lab 735 Km apart [1108.0015]  

T2K: muon neutrino beam produced 
at JPARC [Tokai] 
E=0.6 GeV and sent to 
SK 295 Km apart [1106.2822] 

both experiments favor  
sin2 ϑ13 ~ few %  

from SBL reactor experiments searching for anti-νe disappearance     

Double Chooz (far detector): 
Daya Bay (near + far detectors): 
RENO (near + far detectors): 

sin2 ϑ13 = 0.022 ± 0.013 
sin2 ϑ13 = 0.024 ± 0.004 
sin2 ϑ13 = 0.029 ± 0.006 

€ 

P ν e →ν e( ) =1− sin2 2ϑ13 sin
2 Δm32

2 L
4E

+ ...

SBL reactors are sensitive to ϑ13 only 
LBL experiments anti-correlate sin2 2ϑ13 and sin2 ϑ23 
also breaking the octant degeneracy ϑ23 <->(π-ϑ23)     
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Lisi [Neutel2011]
[0806.22517update]

Fogli et al. 
[1205.5254]

sin2ϑ12 0.307−0.016
+0.018 0.307−0.016

+0.018

sin2ϑ 23 0.42−0.04
+0.09 0.398−0.026

+0.030 [NO]
0.408−0.030

+0.035 [IO]

sin2ϑ13 0.014−0.008
+0.009 0.0245−0.0031

+0.0034 [NO]
0.0246−0.0031

+0.0034 [IO]
Δmsol

2 (eV 2) (7.54−0.22
+0.25) ×10−5 (7.54−0.22

+0.26) ×10−5

Δmatm
2 (eV 2) (2.36−0.10

+0.12) ×10−3
(2.43−0.09

+0.07) ×10−3 [NO]
(2.42−0.10

+0.07) ×10−3 [IO]

updated global fit 

open questions 
-  is L violated or not? 
-  mass ordering: Normal or Inverted? 
-  is ϑ23maximal or not? 
-  δCP   

7σ away  
from 0 

hint for non 
maximal  ϑ23 ? 

€ 

ϑ13 = (9.0 ± 0.6)0



on the theory side 
now data seem sufficiently precise to allow for a strong selection among  
the existing models/ideas 

does a coherent and unique theoretical picture emerge from the data?  

how should we read the data? 

  

€ 

ϑ13 <<ϑ12,ϑ 23

ϑ 23 ≈  maximal
ϑ12 +O(λC ) ≈ π /4

Δmsol
2 << Δmatm

2

“Evidence” for some property  
 of the fundamental theory    

accidental features 
mixing angles and mass ratios are O(1) 
no special pattern beyond the data: 
Anarchy [Hall, Murayama, Weiner 1999] 

less sharp after 
the 2012 data 

the new data have strengthened the case for Anarchy 

this talk:  
there is a limit of the theory where  
lepton mixing angles become simple 
[like VCKM=1 + O(λC)]  
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UPMNS =UPMNS
0 + corrections
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U0
PMNS sin2ϑ 23

0 sin2ϑ13
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0
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⎜ 
⎜ 
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⎠ 
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1/2 0 1/2

3σ  range  [NO] (0.330 ÷ 0.638) (0.0149 ÷ 0.0344) (0.259 ÷ 0.359)

  

€ 

ϕ =
(1+ 5)
2

Golden Ratio

[GR<-> Kajiyama, Raidal, Strumia 2007]  
[TB <->Harrison, Perkins and Scott] 

Mixing patterns U0
PMNS (an incomplete list) 



Gf 

Gν Ge 
residual symmetry 
of (me

+
 me) 

residual symmetry  
of mν        

[He, Keum, Volkas 0601001 
Lam 0708.3665 + 0804.2622] 

[in some limit: u->0] 

[non degenerate  
mass spectrum:  
Ge and Gν abelian] 

(me
+
 me) and mν misaligned because Ge and Gν do not commute       
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Uν
+ρ(gν )Uν = ρ(gν )diag

Ue
+ρ(ge )Ue = ρ(ge )diag

€ 

UPMNS =Ue
+Uν

LO result gets corrected in the full theory 

€ 

ϑ ij =ϑ ij
0 +O u( )

assign l to a 3-dim  irrep ρ(g) of Gf 

Mixing patterns U0
PMNS from discrete symmetries 

the most general group  
leaving νTmν ν invariant,  
and mi unconstrained 

Ge  can be continuous but the  
simplest choice is Ge discrete 

€ 

Ge =
Z2 × Z2
Zn n ≥ 3

⎧ 
⎨ 
⎩ € 

Gν = Z2 × Z2 Majorana neutrinos  
imply Gν discrete! 
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Gf Ge UPMNS
0

A4 Z3 UTB

S4 Z3 UTB
Z4

Z2 × Z2
UBM

A5 Z5 UGR

€ 

Gν = Z2 × Z2

empirical mixing patterns arise from small groups 

 (S,S’) 

   T 

(T,T’)  

generators 

€ 

Ge = Z2 × Z2

€ 

Ge = Zn

 ϑ13=0  and   ϑ23=π/4 originate from the generator S’ of Gν   
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S'=
1 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

in the basis where 
the elements of Ge 
are diagonal 

µ-τ or 2-3 exchange 
symmetry 

invariance under a single Z2 parity in Gν=Z2 x Z2 determines two 
(combinations of) mixing angles:  ϑ13=0  and   ϑ23=π/4 in case of S’    

the second Z2 parity determines the third angle and a phase  

[although S’ does not belong to A4, it  
can arise as an accidental symmetry] 

neutrino masses unconstrained: fitted, not predicted 



[depending on U0 we might 
need u small or very small] 

 general feature 
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UPMNS =UPMNS
0 +O(u)   u ≡ ϕ

Λ
<1 LO result gets corrected 

in the full theory 

€ 

ϑ ij =ϑ ij
0 +O u( )

when U0 is TM (or GR), we expect ϑ13 and (ϑ23-π/4) ≈ few 0.01 
[not to spoil the agreement with ϑ12] 

a challenge for models such as A4 leading to U0 = UTB 
is to generate ϑ13≈ 0.1 while keeping  ϑ12 almost unchanged     

A4 model with typical O(0.1) corrections 
[size of the corrections – 0.08 - optimized to maximize the success rate] 

lack of predictability: sin2 ϑ12 ranges from 0.2 up to 0.45 now  
success rate (about 13%) indicates the need of tuning  
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sin2ϑ13

€ 

sin2ϑ12

€ 

sin2ϑ13

€ 

sin2ϑ 23



A4 models with special corrections 
group theoretical origin of TB mixing suggests how to modify ϑ13≈ 0.1  
while keeping  ϑ12 almost unchanged 

-- natural in the context of A4 that contains S and T, but not S’ 
-- explicit constructions proposed before T2K,… [Lin 2009] 
-- starting from the full Gν=Z2 x Z2, the parity S’ can be broken at a high scale   
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U 0 =UTB ×

cosα 0 eiδ sinα
0 1 0

−e−iδ sinα 0 cosα

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

0 ≤α ≤ π /2
0 < δ ≤ 2π

Trimaximal mixing 
gives back TB when α=0 [assuming α=0.1 and expanding 

in powers of α]  
€ 

sinϑ13 = 2 /3 α + ...
sin2ϑ12 =1/3+ 2 /9α 2 + ...

sin2ϑ 23 =1/2 + α / 3 cosδ + ...
δCP = δ

assume Ge=Z3 (generated by T) and Gν=Z2 (generated by S) 
i.e. remove S’ generator 

€ 

sin2ϑ13

€ 

sin2ϑ12

€ 

sin2ϑ13

€ 

sin2ϑ 23

[much higher success rate ≈65% 
optimal α≈0.18] 
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sin2ϑ13
0.03 0.01 

from the previous relations 

€ 

sin2ϑ 23 =
1
2

+
1
2
sinϑ13 cosδCP +O(sin2ϑ13)

indication for sin2 ϑ23 ≈0.4 
would favor -1 < cosδCP < -0.5 

can be tested by measuring  δCP  
and improving on sin2 ϑ23   

[similar tests can be realized in S4 (TM) and A5 (GR) 
more possibilities by enforcing Gν=Z2 generated by SxS’] 

Trimaximal ansatz proposed with different motivations by many authors 
[He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, 
Albright, Rodejohann 2009, Antusch, King, Luhn, Spinrath 2011, King, Luhn 2011] 

co
s 
δ C

P 

1 

-1 

0 

0.43 

0.37 

contours of equal    sin2 ϑ23 
[Normal 
Ordering] 



corrections to U0
PMNS=UBM realized in S4  

in this case removing S’ would not help since it would maintain ϑ12  
very close to π/4, i.e. the LO BM prediction 

as observed long ago, the most efficient correction is of the following type  

€ 

UBM → Ue
+ UBM

a correction from the charged lepton sector, 
mainly through rotations in the 12 and 13  
sectors, to preserve ϑ23=π/4  

several existing models incorporate this idea, in particular in the context of Gf=S4  

€ 

sin2ϑ13

€ 

sin2ϑ12

S4 model with U0
PMNS=UBM and typical O(0.1) corrections from Ue 

[size of the corrections – 0.17 - optimized to maximize the success rate] 

-- a tuning of the parameters in Ue is 
   needed to reproduce both  ϑ13 and  ϑ12

    otherwise sin2 ϑ12 ranges from 0.2  
   up to 0.8  

-- required tuning is worse than in A4 model  
    with typical O(0.1) corrections [success rate ≈3.5%] 



S4 models with special corrections 
BM mixing can also arise from S4 when Ge=Z2x Z2 (generated by T,T’) and  
Gν=Z2x Z2 (generated by S,S’)  [FHT2]   

-- starting from the full Ge=Z2 x Z2, the parity T’ can be broken at a high scale 
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U 0 =

cosα −eiδ sinα 0
e− iδ sinα cosα 0

0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
×UBM

€ 

0 ≤α ≤ π /2
0 < δ ≤ 2π

[assuming α=0.1 and expanding 
in powers of α]  

€ 

sinϑ13 =α / 2 + ...

sin2ϑ12 =1/2 +α cosδ / 2 + ...
sin2ϑ 23 =1/2 −α 2 /4...
δCP = −δ

assume Ge=Z2 (generated by T) and Gν=Z2 xZ2  (generated by S,S’) 
i.e. remove T’ generator 
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T '=
+1 0 0
0 −1 0
0 0 +1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
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T =

+1 0 0
0 +1 0
0 0 −1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

reasonable correction if charged leptons 
are similar to quarks, i.e. dominant mixing 
is in 12 sector 



from the previous relations 

€ 

sin2ϑ12 =
1
2

+ sinϑ13 cosδCP +O(sin2ϑ13)
since ϑ13=O(λC) this realizes 
a form of QLC 

€ 

sin2ϑ13

-1 
0.03 0.01 

co
s 
δ C

P 

1 

0 

contours of equal    sin2 ϑ12 

0.342 0.354 

strong preference for  δCP =π

[no CP violation in lepton sector]  
and for the higher side of sin2 ϑ12  

reduced parameter space still allowed 

testable by measuring δCP  

  

€ 

UPMNS =UPMNS
0 + correctionsSo far 

[Frampton, Petcov, Rodejohann 0401206 
Altarelli, F, Masina 0402155 
Romanino 0402508, 
Marzocca, Petcov, Romanino, Spinrath 1108.0614] 

[Raidal 0404046 
Minakata, Smirnov 0405088] 



ϑ13 > 0 from any discrete symmetry, at the LO ? 

how to “deform” A4 and/or S4? no continuous parameter 

€ 

S2 = (ST)3 = Tn =1
abstract definition 
in terms of generators 
and relations 

€ 

n = 3 A4
n = 4 S4

both subgroups of the (infinite) modular group Γ 

€ 

S2 = (ST)3 =1

we looked for other subgroups of Γ, the so-called finite modular groups ΓN 
an infinite series, but  there are only six of them admitting (independent) 
3-dimensional irreducible representations [Nobs, 1976] 

€ 

Γ8 ⊃ Δ(96) : S2 = (ST)3 = T 8 =1 ST−1ST( )
3

=1

€ 

Γ16 ⊃ Δ(384) : S2 = (ST)3 = T16 =1 ST −1ST( )3 =1

[FHR1,FHR2] 

€ 

N 3 4 5 7 8 16
ΓN A4 S4 A5 PSL(2,Z7) Γ8 Γ16

new interesting patterns in N=8,16 choosing Ge=Z3 and Gν=Z2 xZ2   



new mixing patterns are special forms of Trimaximal mixing 
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UPMNS
0 =UTBU13(α)

€ 

U13(α) =

cosα 0 sinα
0 1 0

−sinα 0 cosα

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

but δCP =0,π (no CP violation) and  
the angle α is not a free parameter:  
it is “quantized” by group theory  

€ 

Gf Γ8 Γ16
α ±1/12 ±1/24

€ 

sin2ϑ13

€ 

sin2ϑ12

€ 

sin2ϑ13

€ 

sin2ϑ 23

★ ★ ★ 

patterns from Γ16 (compared to A4 with “special”  corrections) 



conclusion 

there are candidate flavor symmetries for LO mixing pattern  
with non-vanishing θ13 and coming very close to the existing data  
[existence proof found]  

big progress on the experimental side: 
-- precisely measured ϑ13: 7σ away from zero! 
-- potentially interesting implications on ϑ23 

on the theory side: 
no compelling and unique picture have emerged so far  
present data can be described within widely different frameworks  
models based on “anarchy” and/or its variants - U(1)FN models - in good shape: 
neutrino mass ratios and mixing angles just random O(1) quantities 

-- models based on discrete symmetries and giving rise, at LO, to 
   ϑ13=0  and   ϑ23=π/4  require some tuning when generic O(0.1) 
   correction are added 

-- special corrections are suggested by the group structure itself, 
    leading to a good description of the data [e.g. in A4] 

-- such special corrections imply restrictions on the CP violating phase δCP  

[see talks by 
C. Luhn 
L. Merlo 
A. Meroni 
G. Ross, 
M. Spinrath…] 



back up slides 
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Δ(384)
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S =
1
2
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T =

ω16
14 0 0
0 ω16
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ω16 = e
iπ
8

€ 

Gν = Z2 × Z2

€ 

Ge = Z3
 generated by (S,ST8ST8) 

 generated by ST 
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UPMNS =
1
3

4 + 2 + 6 /2 1 4 − 2 − 6 /2
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1−1/ 2 1 1+1/ 2
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sin2ϑ13 = (4 − 2 − 6) /12 ≈ 0.011

€ 

sin2ϑ 23 =
(4 − 2 + 6)
(8 + 2 + 6)

≈ 0.424

€ 

sin2ϑ12 =
4

(8 + 2 + 6)
≈ 0.337

€ 

δCP = 0

€ 

δCP = π

[by exchanging 2nd and 3rd rows in UPMNS] 

€ 

sin2ϑ13 = (4 − 2 − 6) /12 ≈ 0.011

€ 

sin2ϑ 23 =
(4 + 2 2)

(8 + 2 + 6)
≈ 0.576

€ 

sin2ϑ12 =
4

(8 + 2 + 6)
≈ 0.337
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Δ(96)
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S =
1
2

0 2 2
2 −1 1
2 1 −1
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T =

ω8
6 0 0
0 ω8

7 0
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3
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⎟ 
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ω8 = e
iπ
4

€ 

Gν = Z2 × Z2

€ 

Ge = Z3
 generated by (S,ST4ST4) 

 generated by ST 

€ 

UPMNS =
1
3

( 3 +1) /2 1 ( 3 −1) /2
( 3 −1) /2 1 ( 3 +1) /2

1 1 1
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⎞ 
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⎟ 
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sin2ϑ13 = (2 − 3) /6 ≈ 0.045

€ 

sin2ϑ 23 = (5 + 2 3) /13 ≈ 0.651

€ 

sin2ϑ12 = (8 − 2 3) /13 ≈ 0.349

€ 

δCP = π € 

sin2ϑ13 = (2 − 3) /6 ≈ 0.045

€ 

sin2ϑ 23 = (8 − 2 3) /13 ≈ 0.349

€ 

sin2ϑ12 = (8 − 2 3) /13 ≈ 0.349

€ 

δCP = 0

[by exchanging 2nd and 3rd rows in UPMNS] 
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Gf Ge UPMNS sin2ϑ 23 sinϑ13 sin2ϑ12

A4 Z3 1
3

1 1 1
1 ω ω 2

1 ω 2 ω

⎛ 

⎝ 
⎜ 

⎞ 
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⎟ ω 3=1 [M] 1/2 1/ 3 1/2 ?

S4 Z3
2/ 6 1/ 3 0
−1/ 6 1/ 3 −1/ 2
−1/ 6 1/ 3 1/ 2

⎛ 
⎝ 
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⎠ 
⎟ [TB] 1/2 0 1/3 OK

Z4 
(Z2 × Z2)'

1
2

1 1 0
−1/ 2 1/ 2 −1
−1/ 2 1/ 2 1

⎛ 

⎝ 
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⎞ 
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⎟ [BM] 1/2 0 1/2 ?

A5 Z3
c s 0

−s / 2 c / 2 −1/ 2
−s / 2 c / 2 1/ 2
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⎝ 
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⎞ 

⎠ 
⎟ 

[GR1]
s / c=1/ϕ 2

1/2 0 0.127 ?

Z5
c s 0

−s / 2 c / 2 −1/ 2
−s / 2 c / 2 1/ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

[GR2]
s / c=1/ϕ

1/2 0 0.276 OK

(Z2 × Z2)'
0.81 0.5 0.31
0.31 0.81 0.5
0.5 0.31 0.81

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ [GR2] 0.276 0.309 0.276 ?

[Exp] [3σ] 0.39÷0.64 <0.2 0.27÷0.36

Mixing patterns [Lam 1104.0055 
F., Hagedorn, Toroop in prep.] 
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ϕ =
(1+ 5)
2

Golden Ratio

€ 

Gν = Z2 × Z2

[GR2<-> Kajiyama, Raidal, Strumia 2007]  [TB <->Harrison, Perkins and Scott] 



can we test these ideas? 

none of these possibilities is supported by the quark properties! 



TESTS [I]     neutrino mass spectrum    

- - LO mixing angles predicted [independently from input parameters] 
- - size of NLO corrections under control, but precise values unknown 

minimal realizations of A4 and S4  
have 2 complex parameters  
in neutrino sector at the LO  

1 sum rule among (complex) mi 

-- neutrino masses do depend on input parameters   

€ 

1
m3

=
1
m1

−
2
m2

both normal [NO] and inverted  
[IO] orderings are allowed 

Gf=A4 x Z3 x U(1)FN  [+ SEE-SAW] 
Example: 

[NLO corrections of order 0.005 < u < 0.05] 

at the LO 



in the NO case the sum rule  
completely determines the spectrum 

€ 

m1 ≈ 0.005 eV m2 ≈ 0.01eV m3 ≈ 0.05 eV
mee ≈ 0.007 eV

in the IO case the sum rule provides  
a lower bound on m3 

€ 

m3 ≥ 0.017 eV
mee ≥ 0.017 eV

NLO corrections are negligible for NO and for IO close to the lower bound 

[NO] 

[IO] 

BDFN hep-ph/0908.0161 

Gf=A4 x …  [+ SEE-SAW] 



Gf=A4x… [+SEE-SAW] 



evidence for lepton flavor conversion 

€ 

ν e →ν µ,ντ

€ 

ν µ →ντ
sol 
atm 

direct 
indirect 

should show up in other processes if the scale of new physics   

€ 

ΛNP ≈1TeV

Zij
dip describes  

lepton EDM, MDM,  
li ->lj γ 

€ 

BR(µ → eγ) <1.2 ×10−11 → Zµe
dip <10−8 ×

ΛNP TeV( )
1 TeV

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

if we insist on having ΛNP≈1TeV, what suppresses the rate? 
[many models fail…] 

TESTS [II]     Lepton Flavour Violation    

distinctive signatures of discrete flavour symmetries 1. 
2. is BR(µ->eγ) sufficiently suppressed if ΛNP=1 TeV?   

  

€ 

Leff = LSM + i e
ΛNP
2 ei

cHd σ
µνFµν( )Z ij

dip l j +...

flavour symmetries can generically help 
what about discrete symmetries? 

€ 

BR(µ → eγ) =O(up ) p > 0



LFV  -  signatures of discrete symmetries    

discrete symmetries are weaker than continuous ones such as MFV, SO(3)… 
and allow for Gf-invariant and LFV operators 

in all models: l~3 of Gf 

  

€ 

A4 S4 A5
1
ΛNP
2 (τ µ ee + ...) Yes Yes Yes

1
ΛNP
2 (τ e µµ + ...) Yes No No

1
ΛNP
2 (µ e ττ + ...) Yes No No

  

€ 

τ− → µ+e−e−         in A4, S4 , A5
τ− → e+µ−µ−         in A4

€ 

BR(τ− → µ+e−e−) < 2.0 ×10−8

BR(τ− → e+µ−µ−) < 2.3×10−8   

€ 

ΛNP >10 TeV
mNP > 500 GeV (mNP = gΛNP /4π )

in simplest realizations of the above groups these operators are  
not generated at the LO 

  

€ 

BR(τ− → µ+e−e− )
BR(τ− → µ+µ−µ− )

=O(u4 )
  

€ 

BR(τ− → e+µ−µ− )
BR(τ− → µ+µ−µ− )

=O(u2
mµ

mτ

)

selection rule 

€ 

ΔLeΔLµΔLτ = 0,±2



LFV - radiative decays li -> ljγ    Gf=A4 x SUSY…   

off-diagonal terms (δij)XY  
local in u=<φ>/Λ  

from loops of SUSY particles 

allowing for the most general slepton mass matrix compatible with pattern  
of flavour symmetry breaking. For instance [in super-”CKM” basis] 

€ 

ˆ m LL
2 =

n n12 u2 n13 u2

n12 u2 n n23 u2

n13 u2 n23 u2 n

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

mSUSY
2 + ...

m2
XY (X,Y=L,R) are almost diagonal 

  

€ 

Rij =
BR(li → l jγ)

BR(li → l jν iν j )
=

6mW
4αem

πmSUSY
4 wiju

2
                              

6mW
4αem

πmSUSY
4 wij

(1)u2
2

+
m j
2

mi
2 wij

(2)u
2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

[generic] 

[restricted 
class of models] 

€ 

BR(µ → eγ) ≈ BR(τ → µγ) ≈ BR(τ → eγ) independently  
from u ≈ ϑ13 

[w(1,2)
ij are known O(1) functions of SUSY parameters] 

τ->μγ and τ->eγ below future experimental sensitivity  

relatively light sparticle spectrum still allowed 

1. 



2. further contributions to slepton mass matrices if ν masses come from type I  
see-saw [ss], through RGE running 

if Gf=A4,S4,A5 

€ 

δµe
ss( )LL = −

3+ a0
2( )y 2

8π 2 Uµ2Ue2
* logm2

m1
+O(u)

δτe
ss( )LL = −

3+ a0
2( )y 2

8π 2 Uτ 2Ue2
* logm2

m1
+O(u)

δτµ
ss( )LL = −

3+ a0
2( )y 2

8π 2 Uτ 2Uµ2
* logm2

m1
+Uτ 3Uµ3

* logm3

m1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +O(u)

at LO they only depend 
on the smallest mi 
at variance with the 
general case  
[18 ss parameters]  

Example: A4 x SUSY+ see-saw 
Normal Ordering 

€ 

BR(µ → eγ) ≈ BR(τ → eγ) ≈O(10−1)BR(τ → µγ)

€ 

δµe
ss( )LL ≈10

−2 -- tanβ   small 
-- relatively heavy sparticles 
-- μ-> eγ close to the present bound 

€ 

Yν
+ log MX

2

MM +

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Yν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
ij

Inverted Ordering 

€ 

BR(µ → eγ) ≈ BR(τ → eγ) << BR(τ → µγ)
yet Rτμ above 10-9 practically excluded 

observation of τ->μγ  [Rτμ>10-9 ]  rules out the A4 x SUSY model  

[Hagedorn, Molinaro, Petcov 0911.3605] 



  

€ 

UPMNS =

⋅ ⋅ .
aa
.
.
.

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

+ (small corrections)

€ 

0
−
1
2
1
2€ 

2
6

1
3

€ 

−
1
6

1
3

−
1
6

1
3

by unitarity 

tri-bimaximal [TB] mixing pattern, 
completely different from the quark 
mixing pattern: two angles are large 

- can be a useful 1st order approximation to data, related to some limit 
  of the underlying theory 

Tribimaximal Mixing 

€ 

ν 2 =
ν e + ν µ + ντ

3
€ 

ν 3 =
−ν µ + ντ

2
maximal 

trimaximal 



€ 

sin2ϑ13
TB = 0

€ 

sin2ϑ 23
TB =

1
2

€ 

sin2ϑ12
TB =

1
3

before T2K this approximation was very good 

experimental error on ϑ12 [1σ] is 0.02 rad <-> 1 degree 
TB prediction for ϑ12 agrees within 1.5 σ

same for the other angles   € 

0.307−0.016
+0.018 0.312−0.015

+0.017

  

€ 

0.42−0.04
+0.09 0.51± 0.06 [NO]

0.52 ± 0.06 [IO]

  

€ 

0.014−0.008
+0.009 0.010−0.006

+0.009 [NO]
0.013−0.007

+0.009 [IO]



example 

€ 

Gν = Z2 × Z2

€ 

A =
1
3

−1 2 2
2 −1 2
2 2 −1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

€ 

B =

1 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

€ 

C =

1 0 0
0 ω 2 0
0 0 ω

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

ω = e
i 2π
3

€ 

me
+me( ) =

me
2 0 0
0 mµ

2 0
0 0 mτ

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

A2 = B2 =1 A,B[ ] = 0

the most general group  
leaving νTmν ν invariant,  
if ϑij do not depend on  mi 

€ 

Ge = Z3

€ 

me
+me( ) =

me
2 0 0
0 mµ

2 0
0 0 mτ

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

C3 =1

€ 

ATmν A = mν BTmνB = mν

€ 

UTB
T mνUTB = mν

diag

€ 

C+(me
+me )C = (me

+me )

clearly Gν and Ge do not commute  

€ 

UPMNS =UTB



A,B and C generate the group S4 [A and C generate the group A4] 

complete models based on these symmetry groups have been constructed 

-- symmetry    
    breaking  
    sector: 
    “flavons” 

€ 

ϕ =
ϕe

ϕν

⎧ 
⎨ 
⎩ 

-- choice of matter representation: l ~ 3,… 

couples to charged lepton sector 

couples to neutrinos 

-- minimization of the  
    energy density V(φl,φν)    

€ 

ϕν    preserving  Gν

ϕe    preserving  Ge

at the LO 

-- additional fields and symmetries often required to accomplish the 
    previous step (and to explain why me<<mμ<<mτ) 

 general feature 
  

€ 

UPMNS =UPMNS
0 +O(u)   u ≡ ϕ

Λ
<1

at the LO 

LO result gets corrected 
in the full theory 

€ 

ϑ ij =ϑ ij
0 +O u( )

we expect ϑ13 to be of order u < few percent 
[not to spoil the agreement with ϑ12] 

-- predictions: constraints on neutrino masses, LFV, spectrum of SUSY 
    particles in SUSY realizations… 

[review: Guido Altarelli and F.F. hep-ph/1002.0211]  



this year [1106.2822] 

muon neutrino beam produced 
at JPARC [Tokai] 
E=0.6 GeV and sent to 
SK 295 Km apart [T2K] 

6 electron neutrino events 
seen [1.5 expected] 
2.5 sigma away from θ13=0  

T2K 

€ 

0.03 < sin2 2ϑ13 < 0.28 [90% CL]
sin2 2ϑ13 |BF= 0.11

€ 

0.04 < sin2 2ϑ13 < 0.34 [90% CL]
sin2 2ϑ13 |BF= 0.14

  

€ 

ϑ13 BF ≈ 0.17    
ϑ13 > 0.09 [90%CL]    [NO]

  

€ 

ϑ13 BF ≈ 0.19    
ϑ13 > 0.10 [90%CL]    [IO]

[see talk by Justyna Logoda] / 



muon neutrino beam produced 
at Fermilab [E=3 GeV] sent to 
Soudan Lab 735 Km apart  

θ13 > 0 at 89% CL  

compatible with MINOS results 

€ 

P ν µ →ν e( ) ≈ sin2ϑ 23 sin
2 2ϑ13 sin

2 Δm32
2 L

4E

 [1108.0015] 



impact on model building 

TB mixing still a good 1st order approximation, corrected by some 
rotation ~ 0.1 rad, coming from the neutrino sector or the charged lepton 
sector and leaving one row or one column of the mixing matrix unchanged 
[He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, 
Albright, Rodejohann 2009, Morisi, Patel, Peinado 2011, Antusch, King, Luhn, Spinrath 2011] 

in previous example (A4) leading to TB, the symmetry related to the B matrix 
receives a sizeable correction  [Ma, Wegman 1106.4269, King, Luhn 2011] 

different symmetry breaking parameters for the charged sector and for 
the neutrino sector [Lin 2009] 

different LO approximation, for instance a bimaximal mixing 
where the solar angle is π/4 and θ13=0, at the leading order. Corrections from 
the charged lepton sector bring the solar angle into agreement and  
generate a non-vanishing θ13   

discrete (and perhaps any) flavour symmetries simply not relevant 
angles are random variables: anarchy  [Hall, Murayama, Weiner 1999] 

[Altarelli, F, Merlo 2009, Bazzocchi 2011, Meloni 2011] 



0 0.1 0.2 

€ 

Rµe <1.2 ×10−11

implies
Rτµ <10−90.02 

could be above future 
sensitivity 

€ 

µ → eγ and τ → µγ

€ 

here µ → eγ  vanishes ϑ13 

0.05 

€ 

disfavoured by A4can be above 
experimental  
sensitivity 

€ 

µ → eγ

MFV 

SUSYxA4    

both 

only 

[D’Ambrosio, Giudice, Isidori, Strumia 2002 
Cirigliano, Grinstein, Isidori, Wise 2005] 



TESTS [III]     slepton mass spectrum   
in most of these constructions  

  

€ 

l ~ 3 ec,µc, τ c ~ singlets       ofGf

  

€ 

m ˜ l 
2( )LL

= diag n,n,n( )m0
2 + O(u)

m ˜ l 
2( )RR

= diag n1
c,n2

c,n3
c( )m0

2 + O(u)
[n,ni

c are O(1) numbers] 

endpoint of dilepton invariant mass distribution in 
can be measured at LHC with a precision <O(10-2) for l=e,μ 

€ 

χ2
0 →χ1

0l+l−

  

€ 

if   m
χ2

0 > m ˜ l > m
χ1

0

endpoint 

€ 

mll
2 =

m
χ2

0
2 −m ˜ l 

2( ) m ˜ l 
2 −m

χ2
0

2( )
m ˜ l 

2

  

€ 

mµµ
2 −mee

2( )
mµµ

2 = C
m ˜ µ 

2 −m ˜ e 
2( )

m ˜ e 
2 =

O(u)     [Left ˜ l ]
O(1)       [Right ˜ l ]

⎧ 
⎨ 
⎩ € 

χ2
0 → ˜ l l →χ1

0l+l−



  

€ 

Lisi [Neutel2011]
[0806.22517update]

Schwetz et al. 
[1103.0734]

sin2ϑ12 0.307−0.016
+0.018 0.312−0.015

+0.017

sin2ϑ 23 0.42−0.04
+0.09 0.51± 0.06 [NO]

0.52 ± 0.06 [IO]

sin2ϑ13 0.014−0.008
+0.009 0.010−0.006

+0.009 [NO]
0.013−0.007

+0.009 [IO]
Δm21

2 (eV 2) (7.54−0.22
+0.25) ×10−5 (7.59−0.18

+0.20) ×10−5

Δm31
2 (eV 2) (2.36−0.10

+0.12) ×10−3
(2.45 ± 0.09) ×10−3 [NO]
(2.34−0.09

+0.10) ×10−3 [IO]

many explanations of the observed mixing angles 
1. no special pattern behind the data, just structure-less O(1) parameters 
2. accidental enhancement (cancellation) of O(λC) contributions 
3. accidental enhancement from RGE evolution  
4. fit to (a restricted # of) parameters in a SO(10) GUT theory 
5. strong or weak Quark-Lepton Complementarity from some dynamical principle 
6. …                                                                  [Smirnov;Raidal;Minakata and Smirnov 2004] 

each of them depends on what is considered relevant 

Example: 
  

€ 

ϑ 23 =
π
4

+ small corrections not relevant for 1, 2,3, 4 

this talk: there is a limit of the underlying theory where lepton mixing angles become 
               simple [e.g.VCKM=1 when λC is sent to zero]   

[Hall, Murayama, Weiner 1999] 



Majorana neutrinos                            Gν discrete 
the most general group  
leaving νTmν ν invariant,  
if ϑij do not depend on  mi 

[go to the basis where  
mν is diagonal: neutrinos  
can only change by a sign] 

Ge  can be continuous but the  
simplest choice is Ge discrete 

€ 

Ge =
Z2 × Z2
Zn n ≥ 3

⎧ 
⎨ 
⎩ 

€ 

Gν = Z2 × Z2

small groups Gf with 3 dimensional irreps [for l], containing Z2xZ2 and Zn 
subgroups. Consider the series defined by 

€ 

S2 = (ST)3 = Tn =1 [S and T are the 
generators of Gf] 

n=0   -> modular group, infinite 
n=1,2 -> no 3 dimensional irreps 
n≥6    -> infinite groups 

we are left with n=3,4,5 

duality group order n 
tetrahedron tetrahedron A4 12 3 

cube octahedron S4  24 4 

dodecahedron icosahedron A5 60 5 


