Discrete Flavour Symmetries after Daya Bay and RENO

Ferruccio Feruglio Universita' di Padova

Planck 2012 - From the Planck scale to the EW scale May 28 - June 1st , 2012 - Warsaw

based on

AFMS = G. Altarelli, F.F., L. Merlo and E. Stamou hep-ph/1205.4670 AFM = G. Altarelli, F.F. and L. Merlo hep-ph/1205.5133 FHT1=F.F., C. Hagedorn, R. de A. Toroop hep-ph/1107.3486 FHT2=F.F., Hagedorn, R. de A. Toroop hep-ph/1112.1340

lepton mixing matrix U_{PMNS}

$$-\frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{l}_{L}\gamma^{\mu}U_{PMNS}\nu_{l}$$

$$U_e^+(m_e^+m_e^-)U_e^- = (m_e^+m_e^-)_{diag}^{T}$$
$$U_v^T m_v^- U_v^- = m_{v \ diag}^-$$

 $(m_e^+ m_e)$ and m_v misaligned in flavour space

what matters is the relative orientation

 U_{PMNS} parametrized in terms of 3 mixing angles and 1 phase (2 more phases are not measurable in neutrino oscillations)

$$artheta_{12} \qquad artheta_{23} \qquad artheta_{13} \qquad \delta_{CP}$$

2011/2012 breakthrough

from LBL experiments searching for $v_{\mu} \rightarrow v_{e}$ conversion

T2K: muon neutrino beam produced at JPARC [Tokai] E=0.6 GeV and sent to SK 295 Km apart [1106.2822]

MINOS: muon neutrino beam produced at Fermilab [E=3 GeV] sent to Soudan Lab 735 Km apart [1108.0015]

 $P(v_{\mu} \rightarrow v_{e}) = \frac{\sin^{2} \vartheta_{23}}{\sin^{2} 2 \vartheta_{13}} \sin^{2} \frac{\Delta m_{32}^{2} L}{4 E} + \dots \qquad both \text{ experiment} \\ \sin^{2} \vartheta_{13} \sim \text{few \%}$

both experiments favor

from SBL reactor experiments searching for anti-ve disappearance

Double Chooz (far detector): Daya Bay (near + far detectors): **RENO** (near + far detectors):

 $\sin^2 \theta_{13} = 0.022 \pm 0.013$ $\sin^2 \theta_{13} = 0.024 \pm 0.004$ $\sin^2 \theta_{13} = 0.029 \pm 0.006$

$$P(v_e \rightarrow v_e) = 1 - \frac{\sin^2 2\vartheta_{13}}{\sin^2 \frac{\Delta m_{32}^2 L}{4E}} + \dots$$

SBL reactors are sensitive to 9_{13} only LBL experiments anti-correlate $\sin^2 2\theta_{13}$ and $\sin^2 \theta_{23}$ also breaking the octant degeneracy $\vartheta_{23} < - (\pi - \vartheta_{23})$

updated global fit

	Lisi [Neutel2011]	Fogli et al.
	[0806.22517update]	[1205.5254]
$\sin^2 artheta_{12}$	$0.307^{+0.018}_{-0.016}$	$0.307^{+0.018}_{-0.016}$
$\sin^2 \vartheta$	$0.42^{+0.09}$	0.398 ^{+0.030} _{-0.026} [NO]
SIII 0 ₂₃	$0.42_{-0.04}$	0.408 ^{+0.035} _{-0.030} [IO]
$\sin^2 \vartheta$	0.01/1 ^{+0.009}	0.0245 ^{+0.0034} _{-0.0031} [NO]
$SIII U_{13}$	$0.014_{-0.008}$	$0.0246^{+0.0034}_{-0.0031}$ [IO]
$\Delta m_{sol}^2 \ (eV^2)$	$(7.54^{+0.25}_{-0.22}) \times 10^{-5}$	$(7.54^{+0.26}_{-0.22}) \times 10^{-5}$
$ \Lambda m^2 (aV^2) $ (2.36 ^{+0.12}) ×	$(2.36^{+0.12}) \times 10^{-3}$	$(2.43^{+0.07}_{-0.09}) \times 10^{-3}$ [NO]
	$(2.30_{-0.10}) \times 10$	$(2.42^{+0.07}_{-0.10}) \times 10^{-3}$ [IO]

hint for non maximal ϑ_{23} ?

7σ away from 0

$$\vartheta_{13} = (9.0 \pm 0.6)^0$$

open questions

- is L violated or not?
- mass ordering: Normal or Inverted?
- is θ_{23} maximal or not?

on the theory side

now data seem sufficiently precise to allow for a strong selection among the existing models/ideas

does a coherent and unique theoretical picture emerge from the data?

 $\vartheta_{12} + O(\lambda_C) \approx \pi/4$

 $\Delta m_{sol}^2 << \Delta m_{atm}^2$

 $\begin{array}{c} \vartheta_{13} << \vartheta_{12}, \vartheta_{23} \\ \vartheta_{23} \approx \text{maximal} \end{array} \right\} \begin{array}{c} \text{less sharp after the 2012 data} \end{array}$

how should we read the data?

accidental features mixing angles and mass ratios are O(1)no special pattern beyond the data: Anarchy [Hall, Murayama, Weiner 1999]

"Evidence" for some property of the fundamental theory

the new data have strengthened the case for Anarchy

this talk: there is a limit of the theory where lepton mixing angles become simple [like $V_{CKM} = 1 + O(\lambda_c)$]

$$U_{PMNS} = U_{PMNS}^0 + \text{corrections}$$

less sharp after

Mixing patterns U⁰_{PMNS} (an incomplete list)

	U ⁰ PMNS	$\sin^2 \vartheta_{23}^0$	$\sin^2 \vartheta_{13}^0$	$\sin^2 \vartheta_{12}^0$
ТВ	$ \begin{vmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{vmatrix} $	1/2	0	1/3
GR	$\begin{vmatrix} c & s & 0 \\ -s/\sqrt{2} & c/\sqrt{2} & -1/\sqrt{2} \\ -s/\sqrt{2} & c/\sqrt{2} & 1/\sqrt{2} \end{vmatrix}$	1/2	0	$\frac{1}{\sqrt{5}\varphi}) \approx 0.276$
BM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	0	1/2
	3σ range [NO]	$(0.330 \div 0.638)$	$(0.0149 \div 0.0344)$	$(0.259 \div 0.359)$

[TB <->Harrison, Perkins and Scott] [GR<-> Kajiyama, Raidal, Strumia 2007]

$$\varphi = \frac{(1+\sqrt{5})}{2}$$
 Golden Ratio

Mixing patterns U⁰_{PMNS} from discrete symmetries

 $(m_e^+ m_e)$ and m_v misaligned because G_e and G_v do not commute assign 1 to a 3-dim irrep $\rho(g)$ of G_f

[non degenerate mass spectrum: G_e and G_v abelian]

$$U_v^+ \rho(g_v) U_v = \rho(g_v)_{diag}$$

$$U_{PMNS}^+ = U_e^+ U_v$$

LO result gets corrected in the full theory

 $\vartheta_{ij} = \vartheta_{ij}^0 + O(u)$

the most general group leaving $v^T m_v v$ invariant, and m_i unconstrained

TT+ ()TT

 G_e can be continuous but the simplest choice is G_e discrete

$$G_{v} = Z_{2} \times Z_{2}$$

Majorana neutrinos imply G_{v} discrete!

$$G_e = \begin{cases} Z_2 \times Z_2 \\ Z_n & n \ge 3 \end{cases}$$

empirical mixing patterns arise from small groups

G_{f}	G_{e}	$U^0_{\it PMNS}$
A_4	Z_3	U_{TB}
S_4	Z_3	U_{TB}
	Z_4 $Z_2 \times Z_2$	$U_{\scriptscriptstyle BM}$
A_5	Z_5	U _{GR}

$$G_v = Z_2 \times Z_2$$

(S,S')

generators

[although S' does not belong to A_4 , it can arise as an accidental symmetry]

$$G_e = Z_n$$
 T
 $G_e = Z_2 \times Z_2$ (T,T')

 $9_{13}=0$ and $9_{23}=\pi/4$ originate from the generator S' of G_{y}

in the basis where the elements of G_e $S' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ μ -T or 2-3 exchange symmetry

invariance under a single Z_2 parity in $G_v = Z_2 \times Z_2$ determines two (combinations of) mixing angles: $9_{13}=0$ and $9_{23}=\pi/4$ in case of S'

the second Z_2 parity determines the third angle and a phase neutrino masses unconstrained: fitted, not predicted

general feature

e
$$U_{PMNS} = U_{PMNS}^{0} + O(u)$$
 $u = \frac{\langle \varphi \rangle}{\Lambda} < 1$ LO result gets corrected
in the full theory
 $\vartheta_{ij} = \vartheta_{ij}^{0} + O(u)$ [depending on U⁰ we might
need u small or very small]

when U⁰ is TM (or GR), we expect ϑ_{13} and $(\vartheta_{23}-\pi/4) \approx$ few 0.01 [not to spoil the agreement with ϑ_{12}]

a challenge for models such as A_4 leading to $U^0 = U_{TB}$ is to generate $\vartheta_{13} \approx 0.1$ while keeping ϑ_{12} almost unchanged

A_4 model with typical O(0.1) corrections

[size of the corrections - 0.08 - optimized to maximize the success rate]

lack of predictability: $\sin^2 \vartheta_{12}$ ranges from 0.2 up to 0.45 now success rate (about 13%) indicates the need of tuning

A4 models with special corrections

group theoretical origin of TB mixing suggests how to modify $9_{13} \approx 0.1$ while keeping 9_{12} almost unchanged

assume $G_e = Z_3$ (generated by T) and $G_v = Z_2$ (generated by S) i.e. remove S' generator

-- natural in the context of A_4 that contains S and T, but not S'

- -- explicit constructions proposed before T2K,... [Lin 2009]
- -- starting from the full $G_v = Z_2 \times Z_2$, the parity S' can be broken at a high scale

from the previous relations

$$\sin^{2} \vartheta_{23} = \frac{1}{2} + \frac{1}{\sqrt{2}} \sin \vartheta_{13} \cos \delta_{CP} + O(\sin^{2} \vartheta_{13})$$

indication for $\sin^2 \vartheta_{23} \approx 0.4$ would favor -1 < $\cos \delta_{CP}$ < -0.5

can be tested by measuring $\,\delta_{CP}\,$ and improving on sin^2 $\vartheta_{23}\,$

Trimaximal ansatz proposed with different motivations by many authors [He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, Albright, Rodejohann 2009, Antusch, King, Luhn, Spinrath 2011, King, Luhn 2011] [similar tests can be realized in S_4 (TM) and A_5 (GR) more possibilities by enforcing $G_v=Z_2$ generated by SxS']

corrections to $U_{PMNS}^{0}=U_{BM}$ realized in S_{4}

in this case removing S' would not help since it would maintain ϑ_{12} very close to $\pi/4$, i.e. the LO BM prediction

as observed long ago, the most efficient correction is of the following type

$$U_{BM} \rightarrow U_e^+ U_{BM}$$

a correction from the charged lepton sector, mainly through rotations in the 12 and 13 sectors, to preserve $\vartheta_{23} = \pi/4$

several existing models incorporate this idea, in particular in the context of $G_f = S_4$

 S_4 model with $U_{PMNS}^0 = U_{BM}$ and typical O(0.1) corrections from U_e [size of the corrections - 0.17 - optimized to maximize the success rate]

- -- a tuning of the parameters in U_e is needed to reproduce both ϑ_{13} and ϑ_{12} otherwise $\sin^2 \vartheta_{12}$ ranges from 0.2 up to 0.8
- -- required tuning is worse than in A_4 model with typical O(0.1) corrections

S4 models with special corrections

BM mixing can also arise from S_4 when $G_e = Z_2 \times Z_2$ (generated by T,T') and $G_v = Z_2 \times Z_2$ (generated by S,S') [FHT2]

$$T = \begin{pmatrix} +1 & 0 & 0 \\ 0 & +1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad T' = \begin{pmatrix} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & +1 \end{pmatrix}$$

assume $G_e = Z_2$ (generated by T) and $G_v = Z_2 \times Z_2$ (generated by S,S') i.e. remove T' generator

-- starting from the full $G_e = Z_2 \times Z_2$, the parity T' can be broken at a high scale

$$U^{0} = \begin{pmatrix} \cos \alpha & -e^{i\delta} \sin \alpha & 0 \\ e^{-i\delta} \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{BM} \begin{bmatrix} 0 \le \alpha \le \pi/2 \\ 0 < \delta \le 2\pi \end{bmatrix}$$

reasonable correction if charged leptons are similar to quarks, i.e. dominant mixing is in 12 sector $\sin \vartheta_{13} = \alpha / \sqrt{2} + \dots$ $\sin^2 \vartheta_{12} = 1/2 + \alpha \cos \delta / \sqrt{2} + \dots$ $\sin^2 \vartheta_{23} = 1/2 - \alpha^2 / 4 \dots$ $\delta_{CP} = -\delta$

[assuming α =0.1 and expanding in powers of α]

from the previous relations

$$\sin^2 \vartheta_{12} = \frac{1}{2} + \sin \vartheta_{13} \cos \delta_{CP} + O(\sin^2 \vartheta_{13})$$

So far $U_{PMNS} = U_{PMNS}^{0}$ + corrections

since $\vartheta_{13} = O(\lambda_c)$ this realizes a form of QLC [Raidal 0404046 Minakata, Smirnov 0405088]

reduced parameter space still allowed

strong preference for $\delta_{CP} = \pi$ [no CP violation in lepton sector] and for the higher side of sin² ϑ_{12}

testable by measuring δ_{CP}

[Frampton, Petcov, Rodejohann 0401206 Altarelli, F, Masina 0402155 Romanino 0402508, Marzocca, Petcov, Romanino, Spinrath 1108.0614]

9₁₃ > 0 from any discrete symmetry, at the LO? [FHR1, FHR2]

how to "deform" A_4 and/or S_4 ? no continuous parameter

abstract definition in terms of generators and relations

$$S^{2} = (ST)^{3} = T^{n} = 1$$
 $n = 3$ A_{4}
 $n = 4$ S_{4}

both subgroups of the (infinite) modular group Γ

$$S^2 = (ST)^3 = 1$$

we looked for other subgroups of Γ , the so-called finite modular groups Γ_N an infinite series, but there are only six of them admitting (independent) 3-dimensional irreducible representations [Nobs, 1976]

N	3	4	5	7	8	16
Γ_{N}	A_4	S_4	A_5	$PSL(2,Z_7)$	Γ_8	Γ_{16}

new interesting patterns in N=8,16 choosing $G_e = Z_3$ and $G_v = Z_2 \times Z_2$

$$\Gamma_8 \supset \Delta(96):$$
 $S^2 = (ST)^3 = T^8 = 1$ $(ST^{-1}ST)^3 = 1$

$$\Gamma_{16} \supset \Delta(384):$$
 $S^2 = (ST)^3 = T^{16} = 1$ $(ST^{-1}ST)^3 = 1$

new mixing patterns are special forms of Trimaximal mixing

$$U_{PMNS}^{0} = U_{TB}U_{13}(\alpha) \qquad U_{13}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

ut $\delta_{CP} = 0, \pi$ (no CP violation) and
he angle α is not a free parameter:
is "quantized" by group theory
$$\frac{G_{f}}{\alpha} = \frac{\Gamma_{8}}{1} \frac{\Gamma_{16}}{\alpha}$$

patterns from Γ_{16} (compared to A_4 with "special" corrections)

b

if

conclusion see talks by C. Luhn big progress on the experimental side: L. Merlo A. Meroni -- precisely measured 9_{13} : 7σ away from zero! G. Ross. -- potentially interesting implications on 9_{23} M. Spinrath...] on the theory side: no compelling and unique picture have emerged so far present data can be described within widely different frameworks models based on "anarchy" and/or its variants - U(1)_{FN} models - in good shape: neutrino mass ratios and mixing angles just random O(1) quantities -- models based on discrete symmetries and giving rise, at LO, to $9_{13}=0$ and $9_{23}=\pi/4$ require some tuning when generic O(0.1)correction are added -- special corrections are suggested by the group structure itself, leading to a good description of the data [e.g. in A_4]

-- such special corrections imply restrictions on the CP violating phase δ_{CP}

there are candidate flavor symmetries for LO mixing pattern with non-vanishing θ_{13} and coming very close to the existing data [existence proof found]

back up slides

$$S = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1 \end{pmatrix}$$

 $G_v = Z_2 \times Z_2$

$$T = \begin{pmatrix} \omega_{16}^{14} & 0 & 0 \\ 0 & \omega_{16}^{5} & 0 \\ 0 & 0 & \omega_{16}^{13} \end{pmatrix} \qquad \omega_{16} = e^{i\frac{\pi}{8}}$$

$$\begin{aligned} G_{v} &= Z_{2} \times Z_{2} \\ \text{generated by (S,ST^{8}ST^{8})} \\ G_{e} &= Z_{3} \end{aligned} \qquad |U_{PMNS}| = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{4 + \sqrt{2} + \sqrt{6}} / 2 & 1 & \sqrt{4 - \sqrt{2} - \sqrt{6}} / 2 \\ \sqrt{4 + \sqrt{2} - \sqrt{6}} / 2 & 1 & \sqrt{4 - \sqrt{2} + \sqrt{6}} / 2 \\ \sqrt{1 - 1/\sqrt{2}} & 1 & \sqrt{1 + 1/\sqrt{2}} \end{pmatrix} \end{aligned}$$

 $\delta_{CP} = \pi$

generated by ST

 $G_e = Z_3$

$$\sin^2 \vartheta_{13} = (4 - \sqrt{2} - \sqrt{6})/12 \approx 0.011$$

$$\sin^{2} \vartheta_{23} = \frac{(4 - \sqrt{2} + \sqrt{6})}{(8 + \sqrt{2} + \sqrt{6})} \approx 0.424$$
$$\sin^{2} \vartheta_{12} = \frac{4}{(8 + \sqrt{2} + \sqrt{6})} \approx 0.337$$
$$\delta_{CP} = 0$$

[by exchanging 2nd and 3rd rows in U_{PMNS}]

$$\sin^2 \vartheta_{13} = (4 - \sqrt{2} - \sqrt{6})/12 \approx 0.011$$

$$\sin^2 \vartheta_{23} = \frac{(4+2\sqrt{2})}{(8+\sqrt{2}+\sqrt{6})} \approx 0.576$$
$$\sin^2 \vartheta_{12} = \frac{4}{(8+\sqrt{2}+\sqrt{6})} \approx 0.337$$

$$S = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1 \end{pmatrix}$$

$$T = \begin{pmatrix} \omega_8^6 & 0 & 0 \\ 0 & \omega_8^7 & 0 \\ 0 & 0 & \omega_8^3 \end{pmatrix} \qquad \omega_8 = e^{i\frac{\pi}{4}}$$

$$G_v = Z_2 \times Z_2$$

generated by (S,ST⁴ST⁴)
 $G_e = Z_3$
generated by ST

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} (\sqrt{3}+1)/2 & 1 & (\sqrt{3}-1)/2 \\ (\sqrt{3}-1)/2 & 1 & (\sqrt{3}+1)/2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{split} \sin^2 \vartheta_{13} &= (2 - \sqrt{3})/6 \approx 0.045 \\ \sin^2 \vartheta_{23} &= (5 + 2\sqrt{3})/13 \approx 0.651 \\ \sin^2 \vartheta_{12} &= (8 - 2\sqrt{3})/13 \approx 0.349 \\ \delta_{CP} &= \pi \end{split} \\ \end{split}$$

Mixing patterns $G_v = Z_2 \times Z_2$

[Lam 1104.0055 F., Hagedorn, Toroop in prep.]

G_{f}	G_{e}	U_{PMNS}		$\sin^2 \vartheta_{23}$	$\sin\vartheta_{13}$	$\sin^2 \vartheta_{12}$				
A_4	Z_3	$\frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix} \omega^3 = 1$	[M]	1/2	1/√3	1/2	?			
S ₄	Z_3	$\begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$	[TB]	1/2	0	1/3	OK			
	$\begin{array}{c c} Z_4 \\ (Z_2 \times Z_2)' \end{array}$	$ \begin{vmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & -1\\ -1/\sqrt{2} & 1/\sqrt{2} & 1 \end{vmatrix} $	[BM]	1/2	0	1/2	?			
A_5	Z ₃	$\begin{pmatrix} c & s & 0 \\ -s/\sqrt{2} & c/\sqrt{2} & -1/\sqrt{2} \\ -s/\sqrt{2} & c/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$	$[GR_1]$	1/2	0	0.127	?			
	Z_5	$\begin{pmatrix} c & s & 0 \\ -s/\sqrt{2} & c/\sqrt{2} & -1/\sqrt{2} \\ -s/\sqrt{2} & c/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$	[GR ₂] <i>s/c=1/φ</i>	1/2	0	0.276	OK			
	$(Z_2 \times Z_2)'$	$\begin{pmatrix} 0.81 & 0.5 & 0.31 \\ 0.31 & 0.81 & 0.5 \\ 0.5 & 0.31 & 0.81 \end{pmatrix}$	[GR ₂]	0.276	0.309	0.276	?			
		[Exp]	[3 <i>σ</i>]	0.39÷0.64	<0.2	0.27÷0.36				
$\varphi = \frac{(1+\gamma)}{2}$	$\sqrt{5}$ Golden Ratio	$\varphi = \frac{(1+\sqrt{5})}{2}$ Golden Ratio [TB <->Harrison Perkins and Scott] [GR ₂ <-> Kajiyama, Raidal, Strumia 2007]								

can we test these ideas?

none of these possibilities is supported by the quark properties!

TESTS [I] neutrino mass spectrum

-- LO mixing angles predicted [independently from input parameters] -- size of NLO corrections under control, but precise values unknown

-- neutrino masses do depend on input parameters

minimal realizations of A_4 and S_4 have 2 complex parameters in neutrino sector at the LO

1 sum rule among (complex) m_i

Example:

 $G_f = A_4 \times Z_3 \times U(1)_{FN}$ [+ SEE-SAW]

$$\frac{1}{m_3} = \frac{1}{m_1} - \frac{2}{m_2}$$
 at the LO

both normal [NO] and inverted [IO] orderings are allowed

[NLO corrections of order 0.005 < u < 0.05]

TESTS [II] Lepton Flavour Violation

evidence for lepton flavor conversion

2

 $\begin{array}{ll} \text{direct} & \nu_e \twoheadrightarrow \nu_\mu, \nu_\tau & \text{sol} \\ \text{indirect} & \nu_\mu \twoheadrightarrow \nu_\tau & \text{atm} \end{array}$

should show up in other processes if the scale of new physics $\Lambda_{NP} \approx 1 \text{ TeV}$

distinctive signatures of discrete flavour symmetries

is BR(μ ->e γ) sufficiently suppressed if Λ_{NP} =1 TeV?

$$\begin{split} L_{eff} &= L_{SM} + i \frac{e}{\Lambda_{NP}^2} e_i^c H_d \left(\sigma^{\mu\nu} F_{\mu\nu} \right) Z_{ij}^{dip} l_j + \dots & \begin{array}{c} Z_{ij}^{dip} \text{ describes} \\ \text{lepton EDM, MDM,} \\ I_i \rightarrow I_j \gamma \\ \\ BR(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} \quad \rightarrow \quad Z_{\mu e}^{dip} < 10^{-8} \times \left[\frac{\Lambda_{NP} \left(\text{TeV} \right)}{1 \text{ TeV}} \right]^2 \end{split}$$

if we insist on having $\Lambda_{NP} \approx 1 TeV$, what suppresses the rate? [many models fail...]

flavour symmetries can generically help what about discrete symmetries?

$$BR(\mu \rightarrow e\gamma) = O(u^p) \qquad p > 0$$

LFV - signatures of discrete symmetries

discrete symmetries are weaker than continuous ones such as MFV, SO(3)... and allow for G_{f} -invariant and LFV operators in all models: $I \sim 3$ of G_f

	A_4	S_4	A_5	selection rule	$\Delta L_e \Delta L_\mu$	$_{t}\Delta L_{\tau} = 0, \pm 2$
$\frac{1}{\Lambda_{NP}^2}(\overline{\tau\mu}ee +)$	Yes	Yes	Yes	$ au^- ightarrow \mu^+ d$	e ⁻ e ⁻	in A_4, S_4, A_5
$\frac{1}{\Lambda_{NP}^2} (\overline{\tau e} \mu \mu +)$	Yes	No	No	$ au^- ightarrow e^+ \mu$	μ-μ-	in A_4
$\frac{1}{\Lambda_{NP}^2} (\overline{\mu} \overline{e} \tau \tau +)$	Yes	No	No			

$$BR(\tau^{-} \to \mu^{+}e^{-}e^{-}) < 2.0 \times 10^{-8}$$

$$BR(\tau^{-} \to e^{+}\mu^{-}\mu^{-}) < 2.3 \times 10^{-8}$$

$$A_{NP} > 10 \text{ TeV}$$

$$m_{NP} > 500 \text{ GeV} \quad (m_{NP} = g\Lambda_{NP} / 4\pi)$$

in simplest realizations of the above groups these operators are not generated at the LO $\frac{BR(\tau^- \to \mu^+ e^- e^-)}{BR(\tau^- \to \mu^+ \mu^- \mu^-)} = O(u^4) \qquad \frac{BR(\tau^- \to e^+ \mu^- \mu^-)}{BR(\tau^- \to \mu^+ \mu^- \mu^-)} = O(u^2 \frac{m_{\mu}}{m_{\mu}})$

m_

LFV - radiative decays $I_i \rightarrow I_j \gamma$

$$G_f = A_4 \times SUSY...$$

from loops of SUSY particles

allowing for the most general slepton mass matrix compatible with pattern of flavour symmetry breaking. For instance [in super-"CKM" basis]

further contributions to slepton mass matrices if v masses come from type I see-saw [ss], through RGE running
if
$$G_{f}=A_{4},S_{4},A_{5}$$

 $\left(\delta_{\mu\nu}^{ss}\right)_{LL} = -\frac{\left(3+a_{0}^{2}\right)y^{2}}{8\pi^{2}}U_{\mu2}U_{e2}^{*}\log\frac{m_{2}}{m_{1}} + O(u)$
 $\left(\delta_{w}^{ss}\right)_{LL} = -\frac{\left(3+a_{0}^{2}\right)y^{2}}{8\pi^{2}}U_{\tau2}U_{e2}^{*}\log\frac{m_{2}}{m_{1}} + O(u)$
 $\left(\delta_{w}^{ss}\right)_{LL} = -\frac{\left(3+a_{0}^{2}\right)y^{2}}{8\pi^{2}}\left[U_{\tau2}U_{e2}^{*}\log\frac{m_{2}}{m_{1}} + O(u)\right]$
 $\left(\delta_{w}^{ss}\right)_{LL} = -\frac{\left(3+a_{0}^{2}\right)y^{2}}{8\pi^{2}}\left[U_{\tau2}U_{\mu2}^{*}\log\frac{m_{2}}{m_{1}} + U_{\tau3}U_{\mu3}^{*}\log\frac{m_{3}}{m_{1}}\right] + O(u)$
 $\left[Y_{v}^{*}\log\left(\frac{M_{x}^{2}}{MM^{*}}\right)Y_{v}\right]_{ij}$
Example: $A_{4} \times \text{SUSY} + \text{see-Saw}$ [Hagedorn, Molinaro, Petcov 0911,3605]
Normal Ordering $BR(\mu \rightarrow e\gamma) \approx BR(\tau \rightarrow e\gamma) \approx O(10^{-1})BR(\tau \rightarrow \mu\gamma)$
 $\left(\delta_{\mu\nu}^{ss}\right)_{LL} \approx 10^{-2}$
 $\cdots \tan\beta$ small
 $\cdots relatively heavy sparticles$
 $\cdots \mu \rightarrow e\gamma$ close to the present bound
Inverted Ordering $BR(\mu \rightarrow e\gamma) \approx BR(\tau \rightarrow e\gamma) < SR(\tau \rightarrow \mu\gamma)$
 $yet R_{\tau\mu}$ above 10^{-9} practically excluded
observation of $\tau - >\mu\gamma$ [$R_{\tau\mu} > 10^{-9}$] rules out the $A_{4} \times SUSY$ model

Tribimaximal Mixing

 can be a useful 1st order approximation to data, related to some limit of the underlying theory before T2K this approximation was very good

$$\sin^{2} \vartheta_{13}^{TB} = 0 \qquad 0.014_{-0.008}^{+0.009} \qquad \begin{array}{c} 0.010_{-0.006}^{+0.009} & [NO] \\ 0.013_{-0.007}^{+0.009} & [IO] \end{array}$$
$$\sin^{2} \vartheta_{23}^{TB} = \frac{1}{2} \qquad 0.42_{-0.04}^{+0.09} \qquad \begin{array}{c} 0.51 \pm 0.06 & [NO] \\ 0.52 \pm 0.06 & [IO] \end{array}$$
$$\sin^{2} \vartheta_{12}^{TB} = \frac{1}{3} \qquad 0.307_{-0.016}^{+0.018} \qquad 0.312_{-0.015}^{+0.017} \end{array}$$

experimental error on ϑ_{12} [1 σ] is 0.02 rad \leftrightarrow 1 degree TB prediction for ϑ_{12} agrees within 1.5 σ same for the other angles

example $G_v = Z_2 \times Z_2$

$$A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^2 = B^2 = 1 \qquad [A,B] = 0$$

$$G_e = Z_3$$

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} \qquad \omega = e^{i\frac{2\pi}{3}}$$

 $C^{3} = 1$

clearly G_v and G_e do not commute

$$A^{T} m_{v} A = m_{v} \qquad B^{T} m_{v} B = m_{v} \qquad \longrightarrow \qquad U_{TB}^{T} m_{v} U_{TB} = m_{v}^{diag}$$
$$C^{+} (m_{e}^{+} m_{e}) C = (m_{e}^{+} m_{e}) \qquad \longrightarrow \qquad (m_{e}^{+} m_{e}) = \begin{pmatrix} m_{e}^{2} & 0 & 0 \\ 0 & m_{\mu}^{2} & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix}$$

A, B and C generate the group S_4 [A and C generate the group A_4]

complete models based on these symmetry groups have been constructed

- -- choice of matter representation: | ~ [review: Guido Altarelli and F.F. hep-ph/1002.0211]
- -- symmetry breaking sector: "flavons"

$$\varphi = \begin{cases} \varphi_e \\ \varphi_v \end{cases}$$

couples to charged lepton sector at the LO couples to neutrinos

energy density V(φ_{I}, φ_{v}) $\langle \varphi_{e} \rangle$ preserving G_{e}

-- minimization of the $\langle arphi_{_{\mathcal{V}}}
angle$ preserving $G_{_{\!\mathcal{V}}}$

at the LO

- -- additional fields and symmetries often required to accomplish the previous step (and to explain why $m_e << m_u << m_{\tau}$)
- -- predictions: constraints on neutrino masses, LFV, spectrum of SUSY particles in SUSY realizations...

general feature

$$U_{PMNS} = U_{PMNS}^{0} + O(u) \quad u = \frac{\langle \varphi \rangle}{\Lambda} < 1$$
 LO result gets corrected
in the full theory
$$\vartheta_{ii} = \vartheta_{ii}^{0} + O(u)$$

we expect
$$\vartheta_{13}$$
 to be of order $u < few$ percent [not to spoil the agreement with ϑ_{12}]

T2K [see talk by Justyna Logoda]

this year [1106.2822]

muon neutrino beam produced at JPARC [Tokai] E=0.6 GeV and sent to SK 295 Km apart [T2K]

6 electron neutrino events seen [1.5 expected] 2.5 sigma away from θ_{13} =0

 $\vartheta_{13}|_{BF} \approx 0.17$ $\vartheta_{13} > 0.09 \ [90\% CL]$ [$\vartheta_{13}|_{BF} \approx 0.19$ $\vartheta_{13} > 0.10 \ [90\% CL]$ [

$$\begin{bmatrix} NO \end{bmatrix}_{-\pi/2}^{\pi/2} = \begin{bmatrix} n/2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\pi/2 \\ -\pi$$

compatible with MINOS results [1108.0015]

muon neutrino beam produced at Fermilab [E=3 GeV] sent to Soudan Lab 735 Km apart

 θ_{13} > 0 at 89% CL

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2} \vartheta_{23} \sin^{2} 2 \vartheta_{13} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$$

impact on model building

TB mixing still a good 1st order approximation, corrected by some rotation ~ 0.1 rad, coming from the neutrino sector or the charged lepton sector and leaving one row or one column of the mixing matrix unchanged [He, Zee 2007 and 2011, Grimus, Lavoura 2008, Grimus, Lavoura, Singraber 2009, Albright, Rodejohann 2009, Morisi, Patel, Peinado 2011, Antusch, King, Luhn, Spinrath 2011]

in previous example (A_4) leading to TB, the symmetry related to the B matrix receives a sizeable correction [Ma, Wegman 1106.4269, King, Luhn 2011]

different symmetry breaking parameters for the charged sector and for the neutrino sector [Lin 2009]

different LO approximation, for instance a bimaximal mixing where the solar angle is $\pi/4$ and $\theta_{13}=0$, at the leading order. Corrections from the charged lepton sector bring the solar angle into agreement and generate a non-vanishing θ_{13} [Altarelli, F, Merlo 2009, Bazzocchi 2011, Meloni 2011]

discrete (and perhaps any) flavour symmetries simply not relevant angles are random variables: anarchy [Hall, Murayama, Weiner 1999]

[D'Ambrosio, Giudice, Isidori, Strumia 2002 Cirigliano, Grinstein, Isidori, Wise 2005]

both $\mu \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$ could be above future sensitivity

0.02 here $\mu \rightarrow e\gamma$ vanishes

0.05

 $R_{\mu e} < 1.2 \times 10^{-11}$ implies

$$R_{\tau\mu} < 10^{-9}$$

0.2

9₁₃

only $\mu \rightarrow e\gamma$ can be above experimental sensitivity

disfavoured by A₄

0.1

SUSYXA₄

0

TESTS [III] slepton mass spectrum

in most of these constructions

$$l \sim 3$$
 $e^c, \mu^c, \tau^c \sim \text{singlets}$ of G_f

$$\begin{pmatrix} m_{\tilde{l}}^2 \end{pmatrix}_{LL} = \operatorname{diag}(n,n,n)m_0^2 + O(u)$$

$$\begin{pmatrix} m_{\tilde{l}}^2 \end{pmatrix}_{RR} = \operatorname{diag}(n_1^c,n_2^c,n_3^c)m_0^2 + O(u)$$
[n,n_i^c are O(1) numbers]

endpoint of dilepton invariant mass distribution in $\chi_2^0 \rightarrow \chi_1^0 l^+ l^$ can be measured at LHC with a precision <O(10⁻²) for I=e,µ

$$\begin{array}{ll} \text{if} & m_{\chi_{2}^{0}} > m_{\tilde{l}} > m_{\chi_{1}^{0}} \\ \chi_{2}^{0} \rightarrow \tilde{l} l \rightarrow \chi_{1}^{0} l^{+} l^{-} \end{array} \qquad \text{endpoint} \quad m_{ll}^{2} = \frac{\left(m_{\chi_{2}^{0}}^{2} - m_{\tilde{l}}^{2}\right) \left(m_{\tilde{l}}^{2} - m_{\chi_{2}^{0}}^{2}\right)}{m_{\tilde{l}}^{2}} \end{array}$$

$$\frac{\left(m_{\mu\mu}^2 - m_{ee}^2\right)}{m_{\mu\mu}^2} = C \frac{\left(m_{\tilde{\mu}}^2 - m_{\tilde{e}}^2\right)}{m_{\tilde{e}}^2} = \begin{cases} O(u) & \text{[Left } \tilde{l} \text{]}\\ O(1) & \text{[Right } \tilde{l} \text{]} \end{cases}$$

-				
	Lisi [Neutel2011]	Schwetz et al.		
	[0806.22517update]	[1103.0734]		
$\sin^2 \vartheta_{12}$	$0.307^{+0.018}_{-0.016}$	$0.312^{+0.017}_{-0.015}$		
$\sin^2 \theta$	0 42+0.09	0.51±0.06 [NO]		
$\sin v_{23}$	$0.42_{-0.04}$	0.52±0.06 [IO]		
$\sin^2 \vartheta_{13}$	$0.014^{+0.009}$	$0.010^{+0.009}_{-0.006}$ [NO]		
	0.014_0.008	0.013 ^{+0.009} _{-0.007} [IO]		
$\Delta m_{21}^2 (eV^2)$	$(7.54^{+0.25}_{-0.22}) \times 10^{-5}$	$(7.59^{+0.20}_{-0.18}) \times 10^{-5}$		
$\left \Delta m_{31}^2 \left(eV^2 \right) \right $	$(2.26^{+0.12}) \times 10^{-3}$	$(2.45 \pm 0.09) \times 10^{-3}$ [NO]		
	$(2.30_{-0.10}) \times 10^{-10}$	$(2.34_{-0.09}^{+0.10}) \times 10^{-3}$ [IO]		

many explanations of the observed mixing angles

[Hall, Murayama, Weiner 1999]

- 1. no special pattern behind the data, just structure-less O(1) parameters
- 2. accidental enhancement (cancellation) of $O(\lambda_c)$ contributions
- 3. accidental enhancement from RGE evolution
- 4. fit to (a restricted # of) parameters in a SO(10) GUT theory
- 5. strong or weak Quark-Lepton Complementarity from some dynamical principle 6. ... [Smirnov; Raidal; Minakata and Smirnov 2004]

each of them depends on what is considered relevant

Example:

 $\vartheta_{23} = \frac{\pi}{4} + \text{small corrections}$ not relevant for 1, 2,3, 4

this talk: there is a limit of the underlying theory where lepton mixing angles become simple [e.g.V_{CKM}=1 when λ_c is sent to zero]

Majorana neutrinos

the most general group

leaving $v^T m_v v$ invariant,

if ϑ_{ii} do not depend on m_i

G_{v} discrete

 $G_v = Z_2 \times Z_2$ [go to m_v is a can on

[go to the basis where m_v is diagonal: neutrinos can only change by a sign]

 G_e can be continuous but the simplest choice is G_e discrete

$$G_e = \begin{cases} Z_2 \times Z_2 \\ Z_n & n \ge 3 \end{cases}$$

small groups G_f with 3 dimensional irreps [for I], containing $Z_2 x Z_2$ and Z_n subgroups. Consider the series defined by

$$S^2 = (ST)^3 = T^n = 1$$

n=0 -> modular group, infinite n=1,2 -> no 3 dimensional irreps n≥6 -> infinite groups

we are left with n=3,4,5

[S and T are the generators of G_{f}]

The five Platonic solids

duality		group	order	n
tetrahedron	tetrahedron	A ₄	12	3
cube	octahedron	S ₄	24	4
dodecahedron	icosahedron	A ₅	60	5