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UED: The basic setup

• UED models are models with flat, compact extra dimensions
in which all fields propagate. 5D and 6D: [Appelquist, Cheng, Dobrescu,(2001)]

see [Dobrescu, Ponton (2004/05), Cacciapaglia et al. , Oda et al. (2010)] for further 6D compactifications.

• The Standard Model (SM) particles are identified with the lowest-lying modes
of the respective Kaluza-Klein (KK) towers.

• Here, we focus on one extra dimension: Compactification on S1/Z2

allows for boundary conditions on the fermion and gauge fields such that
◦ half of the fermion zero mode is projected out⇒ massless chiral fermions
◦ A(0)

5 is projected out⇒ no additional massless scalar
• The presence of orbifold fixed points breaks 5D translational invariance.
⇒ KK-number conservation is violated, but

a discrete Z2 parity (KK-parity) remains.
⇒ The lightest KK mode (LKP) is stable.
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(M)UED pheno review

Phenomenological constraints on the compactification scale R−1

• Lower bounds:
◦ FCNCs [Buras, Weiler et al. (2003); Weiler, Haisch (2007)]

R−1 & 600 GeV at 95% cl.
◦ Electroweak Precision Constraints [Appelquist, Yee (2002); Gogoladze, Macesanu (2006); Gfitter (2011)]

R−1 & 750 GeV for mH = 125 GeV at 95% cl.
◦ no detection of KK-modes at LHC, yet [Murayama et al. (2011)]

R−1 & 600 GeV at 95% cl.
• Upper bound:
◦ preventing too much dark matter by B(1) dark matter

R−1 . 1.5TeV [Belanger et al. (2010)]

UED vs. SUSY at LHC:
• Determining the spin of particles [Barr et al. (2004) and many follow-ups]

• Studying the influence of 2nd KK mode particles
[Datta, Kong, Matchev (2005), Kim, Oh, Park (2011), Chang, Lee, Song (2011)

• Measuring total cross sections [Kane et al. (2005)], some follow-ups]
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the MUED spectrum

The UED mass spectrum at the 1st KK mode (R−1 = 500 GeV, ΛR = 20).

[Cheng, Matchev, Schmaltz, PRD 66 (2002) 036005, hep-ph/0204342]
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Relevance of the detailed mass spectrum

[Cheng, Matchev, Schmaltz, PRD66 (2002) 056006]

The KK mass spectrum determines
decay channels, decay rates, branching
ratios and final state jet/lepton energies
and MET at LHC.
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[Belanger, Kakizaki, Pukhov, JCAP 1102 (2011) 009]

The DM relic density is highly sensitive to
mass splittings at the first and between
the first and second KK level.
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modifying the UED mass spectrum - why? and how?

• UED is a five dimensional model⇒ non-renormalizable.
• It should be considered as an effective field theory with a cutoff Λ.
• Naive dimensional analysis (NDA) result: Λ . 50/R.

A light Higgs and vacuum stability even implies Λ . 6/R. [ Ohlsson et al. (2011)]

if higher dimensional operators and a Higgs brane mass are not included.

• Assumption in MUED: all higher dimensional operators vanish at Λ.
• Effective field theory⇒ include all operators allowed by symmetries.

1. Bulk mass terms for fermions (dim = dim(L))⇒ split UED (sUED),

2. kinetic and mass terms at the orbifold fixed points,
(dim = dim(L) + 1; radiatively induced in MUED)
⇒ nonminimal UED (nUED),

3. bulk or boundary localized interactions (dim > dim(L) + 1)

The former two operator classes modify the free field equations
and thereby alter the Kaluza-Klein decomposition
⇒ different mass spectrum and different KK wave functions.
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Model I: sUED - Bulk mass terms for fermions

In sUED, a KK parity conserving fermion bulk mass term is introduced.
[Park, Shu (2009); Csaki et al. (2001)]

S ⊃
Z

d5x − µθ(y)ΨΨ.

KK decomposition: ΨR(x , y) =
∞X

n=0

Ψ
(n)
R (x) f (n)

R (y) , ΨL(x , y) =
∞X

n=0

Ψ
(n)
L (x) f (n)

L (y).

Solutions for a fermion with right-handed zero mode:
KK zero modes even numbered KK-modes odd numbered KK-modes

f ( 0 )
R (y) =

q
µ

1−e−µπR e−µ|y| f (n)
R (y) = N (n)

R (cos(kny) f (n)
R (y) = N (n)

R sin(kny)

− µ
kn

sin(kn|y |)
”

f (0)
L (y) = 0 f (n)

L (y) = N (n)
L sin(kny) f (n)

L (y) = N (n)
L (cos(kny)

+ µ
kn

sin(kn|y |)
”

k0 = 0 kn = n/R cot(πR
2 kn) = −µ

and mn =
p

k2
n + µ2.

(Solutions for left-handed zero mode: L↔ R and µ→ −µ)
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sUED couplings

Couplings between KK particles and SM particles , follow from overlap integrals

g00n
eff = g0F00n

with F002n ≡
Z πR/2

−πR/2

1
πR

f (0)∗
ψ f (n)

A f (0)
ψ =

(µπR)2(−1 + (−1)neµπR(coth(µπR/2)− 1)p
2(1 + δ0n((µπR)2 + n2π2)
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Model II: nonminimal UED - Boundary localized terms

[Csaki et al. (2001);Aguila et al. (2003); Carena et al. (2002); TF,Menon,Phalen(2009); TF, (in preparation)]

We include the boundary kinetic action

Sbd =

Z
M

Z
S1/Z2

d5x
„
− aB

4ĝ2
1

BµνBµν − aW

4ĝ2
2

W a
µνW a,µν − aG

4ĝ2
3

GA
µνGA,µν

+ahΨh /DΨh + aH(DµH)†DµH
”
×
»
δ

„
y − πR

2

«
+ δ

„
y +

πR
2

«–
,

where h = R, L represents the chirality.
For simplicity, we consider a common electroweak boundary parameter
aB = aW = aH ≡ aew . For the generic case, c.f. [TF,Menon,Phalen(2009)].
The boundary terms modify the boundary conditions on the 5D wave functions

⇒

8>>>>>><>>>>>>:

modified mass quantization conditions: e.g.
tan(πR

2 kn) = −aLkn for even numbered KK modes
cot(πR

2 kn) = aLkn for odd numbered KK modes
modified orthogonality relations for KK wave functions, e.g.
δmn =

R
dy f (n)

L (y)f (m)
L (y)

`
1 + aL[δ(y − πR

2 ) + δ(y + πR
2 )]
´

δmn =
R

dy f (n)
R (y)f (m)

R (y).

Thomas Flacke Constraining universal extra dimensions with LHC and precision tests



UED and Extensions
Constraints from pp → W ′ → tb at LHC

Electroweak precision constraints
Conclusions

Review
Modifying the UED mass spectrum

m1

m2

m3

Excluded

Excluded
@LKPD

-10 -5 -
Π

2
0 5 10

aL

R

1

2

3

4

mnR

Masses of the first three fermion KK
modes in nUED

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

aw

R
a L R

Relative coupling strength g002/gSM

Contours: (−0.5,−0.1, 0, 0.1, 0.5, 1.0)

... again, the KK mass spectrum is altered,
but at the same time, KK number violating couplings are induced.
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Constraints from pp →W (2) → tb

The KK number violating couplings in nUED and sUED imply W ′,Z ′, g′, ... - like
signatures from the s-channel resonances of W (2),Z (2), γ(2),G(2) at LHC.
Here, we focus on pp → W ′ → tb (other channels: work in progress).
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Resulting sUED bounds
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Resulting nUED bounds
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Electroweak precision constraints on sUED and nUED

If corrections to the SM only influence the gauge boson propagators,
they can be parameterized by the Peskin-Takeuchi Parameters

αS = 4e2 `Π′33(0)− Π′3Q(0)
´

,

αT =
e2

ŝ2
Z ĉ2

Z M2
Z

(Π11(0)− Π33(0)) ,

αU = 4e2 `Π′11(0)− Π′33(0)
´

where Π(0) is the respective two-point function evaluated at a reference scale
p2 = 0,
and Π′(0) = dΠ

dp2

˛̨̨
p2=0

.

Experimental values: [Gfitter(2011)]

SBSM = 0.04± 0.10

TBSM = 0.05± 0.11 reference point: mh = 120 GeV, mt = 173 GeV,

UBSM = 0.08± 0.11

with correlations of +0.89 (S − T ), −0.45 (S − U), and −0.69 (T − U).
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Problem in nUED/sUED:
Fermion-to-KK-gauge-boson couplings are not small. This in particular leads to
modifications to muon-decay⇔ determination of the Fermi-constant Gf

HaL HbL

Solution: [Carena, Ponton, Tait, Wagner (2002)]

We for now restrict ourselves to universal fermion bulk masses / boundary terms.
Then, the modifications to Gf can be compensated for by introducing

Seff = SUED

Teff = TUED + ∆TUED = TUED −
1
α

δGf

Gobl
f

Ueff = UUED = ∆UUED = UUED +
4 sin2 θW

α

δGf

Gobl
f
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At tree level in nUED/sUED, the only contributions to the effective parameters
arise from W KK excitations, so that

δGf

Gobl
f

= m2
W

∞X
n=1

(F002n)2

m2
W +

` 2n
R

´2 ,

where again, F002n are the overlap integrals which depend on µ (sUED) or
respectively af , aew (nUED).
The leading one-loop contributions are

SUED ≈
4 sin2 θW

α

"
3g2

4(4π)2

 
2
9

X
n

m2
t

m2
t(n)

!
+

g2

4(4π)2

 
1
6

X
n

m2
h

m2
h(n)

!#
,

TUED ≈
1
α

"
3g2

2(4π)2

m2
t

m2
W

 
2
3

X
n

m2
t

m2
t(n)

!
+

g2 sin2 θW

(4π)2 cos2 θW

 
−

5
12

X
n

m2
h

m2
h(n)

!#
,

UUED ≈ −
4g2 sin4 θW

(4π)2α

"
1
6

X
n

m2
W

m2
W (n)

−
1

15

X
n

m2
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W

m4
W (n)

#
.

Compare to experimental values (χ2-test)⇒ Constraints on parameter space.
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Constraints on sUED parameter space and 1st KK-mode masses
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Constraints on the nUED parameter space and 1st KK-mode masses
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Constraints on the nUED parameter space and 1st KK-mode masses
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Constraints on the nUED parameter space and 1st KK-mode masses
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Conclusions and Outlook

Conclusions:

• Modifications of the KK mass spectrum can occur due to boundary localized
kinetic terms or fermion bulk mass terms.

• In both cases, the KK wave functions are altered, which implies interactions
of Standard Model fermions with all even KK modes of the gauge bosons.

• EWPT: If present in the lepton sector, these interactions modify muon-decay
⇒ the electroweak constraints turn out stronger than naively expected.
⇒ upper bound on mass splittings between the LKP and KK fermions.

• The LHC starts to improve the sUED / nUED parameter space constraints
now in resonance searches for the 2nd KK mode: W ′,Z ′, γ′, g′, ....
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Outlook

• The analysis for W ′,Z ′, γ′, g′, ... searches is under way, which constrains
several different combinations of lepton- and quark-mass/boundary terms.

• Our EW analysis so far was restricted to a uniform fermion mass / BLKT as
we worked with the universal parameters Seff ,Teff ,Ueff .
We work on a more general analysis, which also includes non-universal
contributions.

Request

• When running UED analyses, remember that MUED is only one point in a
vast parameter space.

• But when varying mass spectra, note that wave functions and thereby
couplings are also influenced.
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