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Figure 1: Diagram contributing to the effective Lagrangian.

In other words we would like to compute the diagrams in Fig. 1. To this end we need
to evaluate

αB0B1

ij =
1

y3
1

∫ y1

0

dy dy′ ωi(y) ωj(y
′) GB0B1

(y, y′) (3.19)

where GB0B1
(y, y′) is the 5D gauge boson propagator at zero 4D momentum (with any

possible zero modes subtracted). The precise definition and explicit expressions are
given in App. B. The subscript Bi = N, D denotes the type of boundary conditions of
the gauge field at y = yi (Neumann or Dirichlet). Using the results for the propagators,
Eqs. (B.9) and (B.13), one obtains (after performing suitable partial integrations)

αDN
ij =

∫
e2A (1 − Ωi)(1 − Ωj) ,

αND
ij =

∫
e2A ΩiΩj ,

αDD
ij =

∫
e2AΩiΩj −

∫
e2AΩi ·

∫
e2AΩj∫

e2A
,

αNN
ij =

∫
e2A

(
Ωi −

y

y1

) (
Ωj −

y

y1

)
. (3.20)

All integrations are between 0 and y1. These remarkably simple expressions are totally
general and valid for arbitrary background metric and matter zero-mode wave function.
It is straightforward to check that in case one or both of the currents are localized on the
UV brane (Ωi(y) = 1), αDN and αDD are zero. Similarly if one or both currents reside
entirely on the IR brane (Ωi(y) = 0) the amplitudes αND and αDD vanish. Finally if
ωi(y) = 1 (for instance the case of c = 1/2 for fermions in RS) one finds αNN = 0. The
last result can also be understood from the individual couplings between the current
and each gauge KK mode,

∫
ωfn =

∫
fn. This integral vanishes as a consequence of

the orthogonality of the KK wave functions with the (flat) zero mode wave function
f0 = 1.

Let us apply this formalism to compute the precision observables [11]. Only SM
gauge fields propagate in the bulk, and all of them have Neumann-Neumann BC. Im-
posing a light Higgs it makes sense to keep the latter in the effective theory and compute
the operators involving both Higgs and fermion currents. The effective 4D Lagrangian
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✗ The masses of these mesons are determined by the mass gap of 
the confining theory, much less than Planck scale

K �
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1
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Pl

✗ These currents are very model dependent (global flavor group G)

✗ To generate soft terms, Goldstino field X must transform under G

✗ SCFT’s such as SQCD in conformal window possess a global 
abelian R symmetry under which ALL fields are charged

qR =
2
3
�

Generates IRREDUCIBLE contribution to 
soft terms (→ this talk)



A MODEL IN 5 DIMENSIONS
✗ AdS/CFT: Five dimensional SUGRA provides a simple computable 
framework for strongly coupled SUSY gauge theories.

ds

2 =
1

(kz)2
�
dx

2 + dz

2
�

5d SUGRA + matter 
(hypermultiplets) 

zz1z = 0 z0

IR brane (confinement)UV brane (4d gravity)

✗ Resulting KK Lagrangian describes mesons and their interactions



HYPERMULTIPLETS
✗ In 5d, minimal supersymmetry is N=2

✗ Matter comes in hypermultiplets = two chiral multiplets 

✗ Boundary conditions remove 1/2 of supersymmetries, e.g. 

✗ Zero modes are chiral 

zz1z0
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�(x, z) = �(x) z
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2�c
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✗ Integrate out the heavy KK modes in presence of 5d 
sources (5d energy-momentum tensor, 5d R-current)

✗ Properly subtract zero modes

✗ Extract quartic Kahler potential from 4-fermion terms (or, 
alternatively, from 2-derivative 4-scalar terms)
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Figure 1: Diagram contributing to the effective Lagrangian.

In other words we would like to compute the diagrams in Fig. 1. To this end we need
to evaluate

αB0B1

ij =
1

y3
1

∫ y1

0

dy dy′ ωi(y) ωj(y
′) GB0B1

(y, y′) (3.19)

where GB0B1
(y, y′) is the 5D gauge boson propagator at zero 4D momentum (with any

possible zero modes subtracted). The precise definition and explicit expressions are
given in App. B. The subscript Bi = N, D denotes the type of boundary conditions of
the gauge field at y = yi (Neumann or Dirichlet). Using the results for the propagators,
Eqs. (B.9) and (B.13), one obtains (after performing suitable partial integrations)

αDN
ij =

∫
e2A (1 − Ωi)(1 − Ωj) ,

αND
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∫
e2A ΩiΩj ,

αDD
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∫
e2AΩi ·

∫
e2AΩj∫

e2A
,

αNN
ij =

∫
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y

y1

) (
Ωj −

y

y1

)
. (3.20)

All integrations are between 0 and y1. These remarkably simple expressions are totally
general and valid for arbitrary background metric and matter zero-mode wave function.
It is straightforward to check that in case one or both of the currents are localized on the
UV brane (Ωi(y) = 1), αDN and αDD are zero. Similarly if one or both currents reside
entirely on the IR brane (Ωi(y) = 0) the amplitudes αND and αDD vanish. Finally if
ωi(y) = 1 (for instance the case of c = 1/2 for fermions in RS) one finds αNN = 0. The
last result can also be understood from the individual couplings between the current
and each gauge KK mode,

∫
ωfn =

∫
fn. This integral vanishes as a consequence of

the orthogonality of the KK wave functions with the (flat) zero mode wave function
f0 = 1.

Let us apply this formalism to compute the precision observables [11]. Only SM
gauge fields propagate in the bulk, and all of them have Neumann-Neumann BC. Im-
posing a light Higgs it makes sense to keep the latter in the effective theory and compute
the operators involving both Higgs and fermion currents. The effective 4D Lagrangian
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✗ We can also reconstruct the quartic Kahler from dimension-6, 
four scalar, 2-derivative terms

✗ There are now more contributions

✗ These contributions lead to 
the same Kahler potential!



“GLOBAL” LIMIT

✏ MPl held fixedMPl !1 (z0 ! 0)
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0 otherwise

✗ Let’s take the following limit in this expression:

✗ Decouples 4d gravity (in fact the whole elementary sector)

✗ Retains only the contribution from the CFT!
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✗ Manifestly tachyonic soft terms! m̃2
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“COMPACTIFICATION” LIMIT
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✏! 1

✗ Let’s take the following limit in this expression:

(z1 ! z0)

✗ By looking at the scalar metric, one can also obtain the full Kahler 
in this case (in usual sugra conventions                 )2M2

Pl = 1

Keff = �2 log

�
1� 1

2
¯
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✗ In SUGRA soft terms are 

✗ Still yields tachyonic terms (for subplanckian <X>)
m̃2

ij̄ = (m 3
2
)2gij̄ + |FX |2 RXX̄ij̄



SIDE REMARK ON N=2 SIGMA MODELS

✗ The N=2 hypermultiplets parametrize a nontrivial sigma model

✗ Supersymmetry fixes the curvature of these manifolds to be 
negative and related to the (5d) Planck mass

USp(2nH , 2)
USp(2nH)⇥ USp(2)

U(nH , 2)
U(nH)⇥ U(2) U(nH , 1)

U(nH)⇥ U(1)

No free parameter!

compactify

K = �p log

�
1� p�1

¯

�i�i

�

U model

S model

✗ U model:
✗ S model: p = 2

p = 1

✗ Again yields tachyonic soft masses  (at subplanckian <X>)



CONCLUSIONS
✗ Have considered 5D supersymmetric models of flavor in a slice 
of AdS5 spacetime (SUSY-RS with potentially large IR scale).

✗ Integrating out 5D supergravity yields new contributions to the 
Kahler potential of chiral zero modes 

✗ The se irreducible contribution gives tachyonic soft terms

✗ Via AdS/CFT: dual to the contributions of mesons excited by the 
R-current (FZ multiplet of currents)

✗ Possible additional contributions include 

- Other global (non - R) currents (read: 5d gauge multiplets) 
- Brane localized Kahler potentials
- Radion mediation
- Higher order terms in Kahler potential
- ...



BACKUP



✗ Hypermultiplets describe chiral operators of the CFT

✗ Contains 2 chiral multiplets 

✗ Consider a hypermultiplet with bulk (fermion) mass 
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EFFECTIVE LAGRANGIAN

one can greatly simplify the Lagrangian:
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ĥ

2
5N �

z

�3

2
p

M

3
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@M ĥMN �

1

2
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(1.5)

where all contractions are done with ⌘MN , so no z dependence is left implicit.
The term in the second row should be cancelled by an appropriate Fadeev-
Popov gauge fixing term. Disentangling the di↵erent spins one finds for the
rest
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where ĥµ5 ⌘ zBµ/
p

2 and we denote by h̃µ⌫ the traceless part of ĥµ⌫ . The
two scalar d.o.f. have been disentangled by defining � = 1

2(ĥµµ + 2ĥ55), and

� =
p

3/2 z

�2
ĥ55. Focusing on the zero mode for ĥµ⌫ (which has a wave

function given by f0(y) =
p

2 in our normalization), one deduces the relation
(restoring k)

kM

2
Pl = M

3
. (1.7)

Here M

2
Pl = (16⇡GN)�1 is the reduced Planck mass.

The Lagrangian in Eq. (1.6) is the starting point for the calculation of the
e↵ective action. It will prove convenient to define the following, integrated
versions of the di↵erent components of the 5D energy momentum tensor
appearing in Eq. (1.6).
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In particular, the quantities ⇥µ⌫(z1, x), ⇥tr(z1, x) and ⇥55(z1, x) are the 4D
operators coupling to the zero modes of h̃µ⌫ , � and � respectively.

Following the procedure used in Ref. [3], we first carry out the sum over
KK modes and then integrate over the two external coordinates, performing
various partial integrations. The final result takes a very simple form:
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Some details of the calculation can be found in App. A. The functions ⌦s

are given by
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In the next section we will apply this to supergravity and calculate the con-
tribution to the Kahler potential that can mediate supersymmetry breaking.

2 Mediation of supersymmetry breaking.

In this section we would like consider hypermultiplets and integrate out the
heavy KK modes of the supergravity multiplet. We will find a Kahler poten-
tial that gives rise to soft terms which are completely determined in terms
of the AdS curvature and the hypermultiplet mass terms. Since we are in
particular interested in the quartic terms in the Kahler, we will focus on four-
fermion terms with zero derivatives and four-scalar terms with two deriva-
tives. The relevant part of the hypermultiplet Lagrangian is then
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tribution to the Kahler potential that can mediate supersymmetry breaking.

2 Mediation of supersymmetry breaking.

In this section we would like consider hypermultiplets and integrate out the
heavy KK modes of the supergravity multiplet. We will find a Kahler poten-
tial that gives rise to soft terms which are completely determined in terms
of the AdS curvature and the hypermultiplet mass terms. Since we are in
particular interested in the quartic terms in the Kahler, we will focus on four-
fermion terms with zero derivatives and four-scalar terms with two deriva-
tives. The relevant part of the hypermultiplet Lagrangian is then
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In particular, the quantities ⇥µ⌫(z1, x), ⇥tr(z1, x) and ⇥55(z1, x) are the 4D
operators coupling to the zero modes of h̃µ⌫ , � and � respectively.

Following the procedure used in Ref. [3], we first carry out the sum over
KK modes and then integrate over the two external coordinates, performing
various partial integrations. The final result takes a very simple form:
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KK modes of 
metric yield:

Similar Lagrangian can be written for the 
contribution of 5d gauge field. Cabrer GG, Quirós ’11


