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• Are there QFT models in D = 4 with SCALE invariance but without being 
CONFORMAL  (i.e., invariant under special conformal transformations)?

(In this talk QFT means Quantum Field Theories that are also Poincare 
invariant, i.e., relativistic; one can ask similar questions about non-relativistic 
QFTs but won’t here)

• Are there Renormalization Group (RG) flows in Relativistic QFTs with limit 
cycles or with  limit ergodic flows?

(Known to exist in non-relativistic Quantum Mechanics: Efimov cycles)
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Two Unsolved Mysteries in QFT



Why care?
• Classification: What are the possible behaviors (phases) of  QFT models at 

very long distances: 
• IR-Free: 

• With mass gap: exponentially decaying correlators (eg, confinement)
• Without mass gap: trivial correlators (eg, coulomb phase)

• IR-Interacting
• Interacting CFTs: simple power-law correlators
• Interacting SwC (scale without conformal): non-simple power-law ?!

• Alternative classification: IR-limit of RG-flows (Wilson):
• Strong (e.g., QCD)
• Fixed Point (i.e., IR-CFT)
• Limit Cycles
• Limit ergodic flows

• We are missing quarter-to-half of the possible behaviors!
• New, unknown phenomena/behaviors?
• New, unknown applications? (e.g., “cyclunparticles”)
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Scale without Conformal

• Condition for Scale Invariance?

where the dilatation (scale)  current is given in terms of the improved energy-
momentum tensor

so that 

• Condition for Conformal Invariance?

• It appears that in both cases the condition is 
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∂µDµ = 0

Dµ = xνTµν

∂µDµ = Tµ
µ

∂µKµν = −xνTµ
µ = 0

Tµ
µ = 0
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• Improvements? If

one can improve         so that scale and conformal still conserved.

• But! What if the unbroken symmetry is a combination of two broken 
symmetries? This happens in other familiar contexts:

• For spontaneously broken symmetries, as in the SM: SU(2)!U(1) " U(1)EM

• For anomalous currents, as in B and L in SM, but not B!L

• Look for a conserved current of the form 

where       (the “virial current”) is a non-conserved current that does not depend 
explicitly on coordinates.

Dµ = xνTµν − V µ

Tµν

V µ

Tµ
µ = ∂µ∂νL

µν

(and which is not of the form                          )V µ = ∂νL
µν

Polchinski, Nucl.Phys. B303 (1988) 226



6

THEN: We can have 

∂µD
µ = Tµ

µ − ∂µV
µ = 0

while 

Tµ
µ = ∂µV

µ �= 0

scale invariance

A scale transformation together with a U(1) rotation  
is still a symmetry.

no conformal symmetry 
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Immediate implication: limit cycles or ergodic limit flows.
The two mysteries (where are SwC and where are Limit Cycles/Ergodic) are linked!

Q =

�
d3x V 0Let generates rotations in flavor space

Rotation on fields:

A scale transformation corresponds to RG-motion of coupling constants: if

gIJ...(t0) → gIJ...(t)

Lint = gIJ...ΦIΦJ · · ·

This can undo the rotation (so we have a scale/rotation symmetry) if

gIJ...(t) =
�
(e−itQ)MI (e−itQ)NJ · · ·

�
gMN...(t0)

ΦI → (eitQΦ)I = (eitQ)J
I ΦJ
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Let GF = symmetry group of the kinetic terms (“flavor”)

For fixed t, 
e−itQ ∈ GF

As a function of t: one parameter trajectory in GF , a compact space 

๏Trajectory closes

๏Trajectory comes arbitrarily close to initial point
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Outline

• Introduction
• Searching for SwC models (in D = 4 # ")
• Some General Properties of SI in D = 4

• Scheme Dependence
• Stability Properties
• Correlation Functions
• Cyclunparticles
• Perturbative Solutions in D = 4
• A word about the a-theorem

• The future 



Searching For SwC Models
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(SwC = Scale without Conformal Symmetry)

Want:

∂µD
µ = Tµ

µ − ∂µV
µ = 0 Tµ

µ = ∂µV
µ �= 0

Dµ = xνTµν − V µ

Considerations:

• Interacting
• Renormalizable
• Perturbative
• Enough DOFs for nontrivial virial current
• Fixed points

Need to be more explicit in order to write candidates for the virial current:
  vector operators of dimension-3 with non-vanishing divergence

V µ �= ∂νLµν

D = 4 # !  models: scalars and spinors. 
No YM: scalar and spinor coupling asymptotically free in D = 4 # ! 
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with:

real
scalars

Weyl
spinors

−Lint =
1

4!
λabcdφaφbφcφd +

1

2
ya|ijφaψiψj + h.c.

V µ = Qabφa∂
µφb + iPijψ̄iσ̄

µψj

Only candidate:

Note that:
• Qab = # Qba (symmetric combination gives total divergence)
• P† = # P  (current is real)
• Q and P  are generators of GF = SO(ns) # U(nf) 
• This U(1) subgroup should be broken by 

LK =
ns�

a=1

1

2
∂µφa∂µφa +

nf�

k=1

ψ̄kiσ̄
µ∂µψk

For now: focus on D = 4 # !  models L = LK + Lint

Lint

Need to be more explicit in order to write candidates for the virial current:
  vector operators of dimension-3 with non-vanishing divergence
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∂µD
µ = Tµ

µ − ∂µV
µ = 0Recall: Tµ

µ = ∂µV
µ �= 0with

Trace anomaly: T µ
µ (x) = − 1

4!βabcdφaφbφcφd − 1
2βa|ijφaψiψj + h.c. .

∂µV
µ(x) = Qaa�∂2φaφa� − P ∗

i�iψ̄iiσ̄
µ∂µψi� + Pii�∂µψ̄iiσ̄

µψi�Divergence of virial: 

Using equations of motion obtain conditions:

βabcd = −Qa�aλa�bcd −Qb�bλab�cd −Qc�cλabc�d −Qd�dλabcd�

βa|ij = −Qa�aya�|ij − Pi�iya|i�j − Pj�jya|ij�
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∂µD
µ = Tµ

µ − ∂µV
µ = 0Recall: Tµ

µ = ∂µV
µ �= 0with

Trace anomaly: T µ
µ (x) = − 1

4!βabcdφaφbφcφd − 1
2βa|ijφaψiψj + h.c. .

∂µV
µ(x) = Qaa�∂2φaφa� − P ∗

i�iψ̄iiσ̄
µ∂µψi� + Pii�∂µψ̄iiσ̄

µψi�Divergence of virial: 

Using equations of motion obtain conditions:
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These are not functional equations

Solution: specific values of coupling constants (and Q and P)
that satisfy these equations

Precisely as in searching for conformal fixed points (with Q = P = 0)
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"-expansion

βλ ∼ −ελ +
1

16π2

�
λ2 + (y†y)2

�
+ · · · βy ∼ −εy +

1
16π2

yy†y + · · ·Recall:

Expansion (“flavor” indices implicit):

and

y =
�

n≥1

y(n)εn− 1
2 λ =

�

n≥1

λ(n)εn

Q =
�

n≥2

Q(n)εn P =
�

n≥2

P (n)εn

Match powers of      on both sides of βλ = Qλ βy = Qy + Pyε
1
2 and

• Lowest order: non-linear. Many solutions. Discard “bad” ones
• Higher orders: linear 

• beta-functions to fixed order in the loop expansion
• coupling constants on limit cycle (e.g., on solution) remain small
• Q and P consistent with beta-function loop expansion

We look for solutions using perturbation theory:
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Summary of findings:

No SwC for pure scalar theory at 2-loops
No SwC to all orders in perturbation theory for any nf  if  ns < 2 
Solutions with P = 0 but Q $ 0 (Q = order !3) established at 3-loops in:

 nf  = 1, ns = 2,   (unbounded tree-level scalar potential) 
 nf  = 2, ns = 2,   (bounded tree-level scalar potential) 
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Comments:

• Tree level potential bounded vs unbounded: red-herring
‣ Much like studying RG flows in %3 in D = 6 
‣ Vacuum stability determined by effective potential

• Beta-functions:
‣ Used Jack & Osborn beta-functions at 2-loops
‣ 3-loop beta functions generally unknown, but:

! Only Yukawa’s beta-function can modify Q at order !3

! About 250 3-loop 1PI graphs: only 12 can modify Q at this order (see next slide)

• Computations described are all in MS-scheme
‣ Result is scheme dependent in D = 4 # "
‣ “classical” term in beta-function (!!") is not covariant 

Nucl.Phys. B249 (1985) 472
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Fig. 2: Diagrams that contribute to q at three-loop order.
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Eq. (2.1b) is to be solved first, at order ε3/2. The result is used in Eq. (2.1a) which is

then solved at order ε2. This is a system of coupled nonlinear equations and, as such, it

has many solutions y(1)a|ij and λ(1)
abcd, some of them consistent with unitarity and boundedness

of the scalar potential, while others not. Additionally, some of these solutions lead to

conformal fixed points, while others allow for nonzero q, at least in principle.

At two-loop order solutions y(1)a|ij and λ(1)
abcd of the previous order are used to solve

Eq. (2.1b) at order ε5/2, and Eq. (2.1a) at order ε3. This is now a system of coupled

linear equations,3 from which the unknowns y(2)a|ij and λ(2)
abcd are determined. For most y(1)a|ij

and λ(1)
abcd the unknown q(2) is equal to zero, but for certain y(1)a|ij and λ(1)

abcd, i.e., for possible

scale-invariant solutions, it is found to be equal to a linear combination of coefficients of

monomials in βa|ij . More specifically, the diagrams that contribute to q at two loops are

shown in Fig. 1.

D(2)
1 D(2)

2

Fig. 1: Diagrams that contribute to q at two-loop order.

Let b1 and b2 be their coefficients in the beta function for the Yukawa coupling,

(16π2)2β(2-loop)
a|ij ⊃ b1yb|iky

∗
c|k!yd|!jλabcd + b2yb|ijλbcdeλacde.

Then (we omit the prefactor here since it is not relevant for the discussion),

q(2) ∝ b1 + 24b2, (2.3)

and because b1 = −2 and b2 =
1
12 we find q(2) = 0. As we already mentioned, the failure to

find trustworthy non-conformal scale-invariant solutions at two loops can be explained by

the gradient flow property of the RG flow at weak coupling described in Ref. [8]. Note that

here, contrary to the case of conformal fixed points, q(3) $= 0 at two-loop order. However,

the three-loop contributions to the beta functions can very well conspire to set q(3) = 0,

3For all higher orders in ε one only gets systems of coupled linear equations.
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2-loops

3-loops

Diagrams that can contribute to q = Q12 in the ns = nf = 2 model



Some General Properties of SI 
Solutions 

(in D = 4, but readily extended to other dimensions)
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Scheme Dependence
Properties that have physical consequences must be independent of the scheme:

Single coupling fixed point
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Stability Properties

δg(t) = [g(t)− g∗(t)]e−Qt Measures small deviations of flow from cycle
g∗(t) = g∗(0)eQt

Then δg(t) = δg(0)e−St

where S =

�
∂β

∂g

����
g=g∗(0)

+ Q

�
is the “stability matrix” 
(scheme independent eigenvalues)

Limit cycle:  there is always one vanishing eigenvalue

For example: in nf , ns = 2 , 2 eigenvalues are 2.4, 1, 0.99, 0.74, 0.095, #0.19, 0 (in units of ! ) 

(generic vector of couplings, matrix notation)



Correlation Functions
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Determined from RGE. Less constrained than in CFTs (less symmetry)

By example here (rather than in generality). 
Consider scalar and vector operators under SO(ns) ! GF

�O(p)O�(−p)� = C(−p2
− i�)

1
2 (∆+∆�−4)

scalar-scalar:

Dimensions constrained by unitarity: for (j1, j2) operator   ! " j1 + j2 + 1 
(for CFT, operators with  j1 j2 # 0  have ! " j1 + j2 + 2)

�Oa(p)O�(−p)� = (−p2
− i�)

1
2 (∆�−4)

�
(−p2

− i�)
1
2 (∆+Q)

�

ab
Cb

scalar-vector:
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vector-vector:

�Oa(p)Ob(−p)� = (−p2
− i�)−3

�
(−p2

− i�)
1
2 (∆+Q)C(−p2

− i�)
1
2 (∆−Q)

�

ab

with C an ns $ ns matrix

�O
µ
a (p)Oν

b (−p)� = (−p2
− i�)−3

�
(−p2

− i�)
1
2 (∆+Q)(p2gµνC1 + pµpνC2)(−p2

− i�)
1
2 (∆−Q)

�

ab

and for (Lorentz) vectors:

C1,2  are ns $ ns matrices, relation between them not forced by symmetry 
(as opposed to CFT case)

Cyclunparticles: As Georgi’s unparticles but replacing CFT sector by SwC model 

L ⊃ gaχOa + h.c.

SM source Strongly coupled SI sector
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ln p2

F (p2)

SO(2) model with particular choice of Q12 and $
F = phase space for decay into SM+cyclunparticle 
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ln p2

F (p2)

SO(2) model with particular choice of Q12 and $
F = phase space for decay into SM+cyclunparticle 

ln p2

ln |∆σ/σSM|

Interference in e+e! " µ+µ! cross section:
again SO(2) model with particular 
choice of Q12 and $ 
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ln p2

F (p2)

SO(2) model with particular choice of Q12 and $
F = phase space for decay into SM+cyclunparticle 

ln p2

ln |∆σ/σSM|

Interference in e+e! " µ+µ! cross section:
again SO(2) model with particular 
choice of Q12 and $ 

Moral: SI is not to be confused with a CFT



Perturbative Solutions in D = 4



• Yang-Mills with Weyl-spinors and scalars
• Couplings:

• YM: g
• Scalar: )
• Yukawa: y

• Arrange for perturbative Caswell-Banks-Zaks fixed point g% which drives  )  
and y toward fixed points and cycles

• Particular examples:
‣ YM: SU(N)
‣ Two real scalars, singlets under SU(N)
‣ Two Weyl spinors in fundamental + two in anti-fundamental
‣ The above produces at least as much complexity in flavor space as our 

D = 4 !" , ns,nf = 2,2  model
‣ Additional spinors in fundamental + anti-fundamental to achieve CBZ 

fixed point perturbatively
‣ Have done N = 2,3 (N = 2 is questionable for perturbation theory)
‣ Cycles found at 2-loops
‣ Potentially undone by 3-loops (just as in D = 4 # " )
‣ 3-loop calculation in progress
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done! PRELIMINARY: SwC found, with P = 0, Q % 0



a-theorem
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Three versions:
(i) Weak: aUV > aIR for flows between fixed points (FP)
(ii) Strong: da/dt ≤ 0, saturated at FP only
(iii) Strongest: gradient flow with positive definite metric

SFT and cycles:
(i) Weak: no conflict
(ii) Strong: no conflict if amended to “saturated at FPs and also on cycles”
(iii) Strongest: incompatible

⇒ da

dt
= −βJ ∂a

∂gJ
= −βJβIGIJ ≤ 0βI = GIJ ∂a

∂gJ
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Osborn: in general, for classically scale invariant D = 4 theory  with 
dimensionless couplings gI the Weyl anomaly coefficient a must satisfy

H. Osborn, “Weyl consistency conditions ...”, 
Nucl.Phys. B363, 486 (1991).

with

Note that 

fixed points or cycles!

Relation to some other work:

∂ã

∂gI
= (GIJ + ∂[IwJ])BJ

where BJ = βJ − (Qg)Jã = a + 1
8βIwI and

Hence dã

dt
= −(GIJ + ∂[IwJ])BJβI

wI �= 0 even when Q = 0, but 2-loop exact (                   )    Also:

dã

dt
= 0↔ βI = 0|BI = 0

and 

Q = 0 ⇒ dã

dt
= −GIJβJβI ≤ 0

dã

dt
= 0↔ βI = 0

(iii) Strongest: not proven for any D

∂[IwJ] = 0
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Note that  

Q = 0 ⇒ dã

dt
= −GIJβJβI ≤ 0

(ii) strong version:

• D = 2: Proof that scale implies CFT by Zamolodchikov + Polchinski
• D = 4: Osborn

ã = a + 1
8βIwIwith

ã = a only at FPs, not along flow.

Luty et al claim, along flow
da

dt
≤ 0

Both arguments require perturbation theory.
Is there a contradiction?

With dim-3 operators Osborn finds:

& Rattazzi’s talk

dã

dt
= −(GIJ + ∂[IwJ])B

JβI

Luty et al claim inconsistency with cycles.

(i) weak version: Komargodski & Schwimmer claim proof 1107.3987
1112.4538

1204.5221



The End
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Obviously, lots of things left to do ...

• 3-loops
• Explore models in D = 4
• Find other classes of models in D = 4
• Supersymmetry?
• D = 2 + ! ?
• D = 6 ? 
• D = 3 ? Directly (perturbatively) 
• D = 3 at strong coupling? (in 4 # " * 3 limit)
• Flows, globally (from where to where?)
• Relation to NR-QM cycles (Efimov)?
• Gravity duals? 
• Strong coupling (maybe through gravity duals?)
• ...



Extra slides
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T µ
µ (x) = γaa�D2φaφa� − γ∗

i�iψ̄iiσ̄
µDµψi� + γii�Dµψ̄iiσ̄

µψi�

− 1
4! (βabcd − γa�aλa�bcd − γb�bλab�cd − γc�cλabc�d − γd�dλabcd�)φaφbφcφd

− 1
2 (βa|ij − γa�aya�|ij − γi�iya|i�j − γj�jya|ij�)φaψiψj + h.c. .

Trace anomaly:

∂µD
µ(x) = (γaa� +Qaa�)D2φaφa� − (γ∗

i�i + P ∗
i�i)ψ̄iiσ̄

µDµψi� + (γii� + Pii�)Dµψ̄iiσ̄
µψi�

− 1
4! (βabcd − γa�aλa�bcd − γb�bλab�cd − γc�cλabc�d − γd�dλabcd�)φaφbφcφd

− 1
2 (βa|ij − γa�aya�|ij − γi�iya|i�j − γj�jya|ij�)φaψiψj + h.c. ,

Using the EOM to eliminate anomalous dimensions is on the same footing as using EOM
on the virial current

Use EOM?
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Note on strongest version in D=2

• Zamolodchikov proved it to 1st order in conformal perturbation theory

• Freedman et al show no longer generally possible at 2nd order 

• Friedan et al found correction to Zamolodchikov’s metric and the wI term
J Phys A: Math Theor 43 (2010) 215401

PRD 73, 066015 (2006)
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To be sure, these only guaranteed under natural scheme changes

λ̃abcd = λabcd + ηabcd(λ, y, g)
ỹa|ij = ya|ij + ξa|ij(λ, y, g)

A scheme change

is natural if all couplings transform covariantly with respect to GF (the symmetry 
group of the kinetic terms)

that is, if

λabcd → Raa�Rbb�Rcc�Rdd�λa�b�c�d� ⇒ λ̃abcd → Raa�Rbb�Rcc�Rdd� λ̃a�b�c�d�

ya|ij → Raa�R̂ii�R̂jj�ya�|i�j� ⇒ ỹa|ij → Raa�R̂ii�R̂jj� ỹa�|i�j�and
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Polchinski (‘87): scalars only, 1-loop solutions: if SI then CFT 

βabcd = Qaeλebcd + permutations

⇒
�

a,b,c,d

β2
abcd =

�

a,b,c,d

βabcd(Qaeλebcd + permutations)

now show RHS vanishes identically (for any value of  coupling constant ")

βabcd = −�λabcd +
#

16π2
(λabghλcdgh + permutations)

1-loop term: 

“classical” term: βabcd(Qaeλebcd) ∝ Qaeλebcdλabcd = 0

βabcd(Qaeλebcd) ∝ Qaeλebcdλabghλcdgh = 0

Dorigoni&Rychkov (‘10): scalar plus Weyl fermions, 1-loop: if SI then CFT

FGS (’11): obstruction to above argument appears at 2-loops (for model with Weyl+scalars)
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Cyclunparticles
As Georgi’s unparticles for CFTs, use SM to probe SI sector: 
• weakly couple SM to SI model (possibly strongly coupled)
• use irrelevant operators to retain IR behavior
• see fractional phase space, but also possibly oscillatory behavior
• see odd scaling  and oscillations in interference term in scattering 

χ→ χ forward scattering amplitude: Mfwd = gagb|χ|2
�
(−p2 − i�)

1
2 (∆+Q)−1C(−p2 − i�)

1
2 (∆−Q)−1

�

ab

F (p2) = −gagb

�
(p2)

1
2 (∆+Q)−1

�
cos

��
∆+Q

2

�
π
�
C sin

��
∆−Q

2

�
π
�

+sin
��

∆+Q
2

�
π
�
C cos

��
∆−Q

2

�
π
��

(p2)
1
2 (∆−Q)−1

�

ab

Take imaginary part:

Cyclunparticle phase space: discontinuity of correlation function across real axis

L ⊃ gaχOa + h.c.For example, if 


