## Vacuum Alignment from Group Theory

### Martin Holthausen

based on MH, Michael A. Schmidt JHEP 1201 (2012) 126 , arXiv: 1111.1730 & MH, Manfred Lindner, Michael A. Schmidt in preparation



Planck 2012 May 29th 2012, Warsaw

INTERNATIONAL MAX PLANES RESEARCH SCHOOL



For predision tests of fundamental symmetries

### Lepton mixing from discrete groups



session tomorrow

## An A<sub>4</sub> Prototype model

- (A<sub>4</sub>,Z<sub>4</sub>) charge assignments: L~ (3,i), e<sup>c</sup>~ (I<sub>1</sub>,-i),  $\mu^{c}$ ~ (I<sub>2</sub>,-i),  $\tau^{c}$ ~ (I<sub>3</sub>,-i),  $\chi$ ~(3,I),  $\Phi$ ~(3,-I),  $\xi$ ~(I,-I)
- auxiliary Z<sub>4</sub> separates neutral and charged lepton sectors at LO



Vacuum alignment crucial!

[e.g. Ma,Rajasekaran'01, Babu, Ma, Valle '03, Altarelli,Feruglio, '05,'06]





Minimization conditions then give:

$$0 = \left[\frac{\partial V}{\partial \chi_1}\right]_{\chi_i = v'} = \frac{2}{\sqrt{3}} \left(m_0^2 + \sqrt{3}m_A^2\right) v' + 4\lambda_1 v'^3$$
$$0 = \left[\frac{\partial}{\partial \chi_2} V - \frac{\partial}{\partial \chi_3} V\right]_{\chi_i = v'} = 2m_B^2 v'$$
$$0 = \left[\frac{\partial}{\partial \chi_1} V - \frac{\partial}{\partial \chi_3} V\right]_{\chi_i = v'} = \left(2m_A^2 - m_C^2\right) v'$$

• This thus requires  $m_A = m_B = m_C = 0$ , i.e. all non-trivial contractions between  $\Phi$  and  $\chi$  have to vanish in the potential.

To get the correct vacuum alignment, one thus needs to fine-tune the couplings

$$V_{\min}(\chi,\phi) = \kappa_{\underline{\mathbf{3}}_{1}}(\phi\phi)_{\underline{\mathbf{3}}_{1}}(\chi\chi)_{\underline{\mathbf{3}}_{1}} + \left(\kappa_{\underline{\mathbf{1}}_{2}}(\phi\phi)_{\underline{\mathbf{1}}_{2}}(\chi\chi)_{\underline{\mathbf{1}}_{3}} + \text{h.c.}\right) + \rho_{\underline{\mathbf{3}}_{1}}\phi(\chi\chi)_{\underline{\mathbf{3}}_{1}}$$

even if one sets the couplings to zero, they will be generated at one-loop level



 $\kappa_1(\phi\phi)_{\underline{1}_1}(\chi\chi)_{\underline{1}_1}$ 

flavour conserving

one needs a symmetry to enforce  $V=V_{\Phi}(\Phi)+V_{\chi}(\chi)+(\Phi\Phi)_{\Gamma}(\chi\chi)_{\Gamma}$ .

To get the correct vacuum alignment, one thus needs to fine-tune the couplings

$$V_{\min}(\chi,\phi) = \kappa_{\underline{\mathbf{3}}_{1}}(\phi\phi)_{\underline{\mathbf{3}}_{1}}(\chi\chi)_{\underline{\mathbf{3}}_{1}} + \left(\kappa_{\underline{\mathbf{1}}_{2}}(\phi\phi)_{\underline{\mathbf{1}}_{2}}(\chi\chi)_{\underline{\mathbf{1}}_{3}} + \text{h.c.}\right) + \rho_{\underline{\mathbf{3}}_{1}}\phi(\chi\chi)_{\underline{\mathbf{3}}_{1}}$$



 for a natural model the realizes vacuum alignment, we need to have a finite portion of parameter space in which TBM vacuum is realized

To get the correct vacuum alignment, one thus needs to fine-tune the couplings

$$V_{\min}(\chi,\phi) = \kappa_{\underline{\mathbf{3}}_{1}}(\phi\phi)_{\underline{\mathbf{3}}_{1}}(\chi\chi)_{\underline{\mathbf{3}}_{1}} + \left(\kappa_{\underline{\mathbf{1}}_{2}}(\phi\phi)_{\underline{\mathbf{1}}_{2}}(\chi\chi)_{\underline{\mathbf{1}}_{3}} + \text{h.c.}\right) + \rho_{\underline{\mathbf{3}}_{1}}\phi(\chi\chi)_{\underline{\mathbf{3}}_{1}}$$



 for a natural model the realizes vacuum alignment, we need to have a finite portion of parameter space in which TBM vacuum is realized

To get the correct vacuum alignment, one thus needs to fine-tune the couplings

$$V_{\min}(\chi,\phi) = \kappa_{\underline{\mathbf{3}}_{1}}(\phi\phi)_{\underline{\mathbf{3}}_{1}}(\chi\chi)_{\underline{\mathbf{3}}_{1}} + \left(\kappa_{\underline{\mathbf{1}}_{2}}(\phi\phi)_{\underline{\mathbf{1}}_{2}}(\chi\chi)_{\underline{\mathbf{1}}_{3}} + \text{h.c.}\right) + \rho_{\underline{\mathbf{3}}_{1}}\phi(\chi\chi)_{\underline{\mathbf{3}}_{1}}$$



 for a natural model the realizes vacuum alignment, we need to have a finite portion of parameter space in which TBM vacuum is realized

## Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005



## Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005

In SUSY, one has to introduce a continuous Rsymmetry and additional fields with R-charge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

| Field    | $  \varphi_T  $ | $arphi_S$ | ξ | $ \tilde{\xi} $ | $ert arphi_0^T$ | $arphi_0^S$ | $\xi_0$ |
|----------|-----------------|-----------|---|-----------------|-----------------|-------------|---------|
| $A_4$    | 3               | 3         | 1 | 1               | 3               | 3           | 1       |
| $Z_3$    | 1               | ω         | ω | $\omega$        | 1               | ω           | ω       |
| $U(1)_R$ | 0               | 0         | 0 | 0               | 2               | 2           | 2       |

Altarelli, Feruglio 2006



## Solutions in the Literature

In models with extra dimensions(ED), it is possible to locate the various fields at different locations in the ED, thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005

In SUSY, one has to introduce a continuous Rsymmetry and additional fields with R-charge 2(driving fields). These fields enter the superpotential only linearly and allow the vacuum alignment.

| Field    | $  \varphi_T  $ | $arphi_S$ | ξ | $ 	ilde{\xi} $ | $ert arphi_0^T$ | $arphi_0^S$ | $\xi_0$ |
|----------|-----------------|-----------|---|----------------|-----------------|-------------|---------|
| $A_4$    | 3               | 3         | 1 | 1              | 3               | 3           | 1       |
| $Z_3$    | 1               | $\omega$  | ω | $\omega$       | 1               | $\omega$    | ω       |
| $U(1)_R$ | 0               | 0         | 0 | 0              | 2               | 2           | 2       |

Altarelli, Feruglio 2006

Babu and Gabriel(2010) proposed the flavour group  $(S_3)^4 \rtimes A_4$ , which has the properties leptons transform only under A<sub>4</sub> subgroup

if one takes  $\Phi \sim 16$ , vacuum alignment possible as  $V = V(\Phi) + V(\chi) + (\Phi \Phi)_1(\chi \chi)_1$ 

 $\circ$  neutrino masses then generated by coupling to  $\langle \Phi^4 \rangle \sim (1,0,0)$ 



### Group extensions and Vacuum alignment

- To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successful groups  $H=A_4,T_7,S_4,T'$  or  $\Delta(27)$ ].
- we require the following:
  - lepton structure should be same  $\rightarrow$  irreps of H should be promoted to irreps of G, we therefore need a surjective homomorphism  $\xi : G \rightarrow H$  such that  $\rho^{G} = \rho^{H} \circ \xi, |_{\sim} \underline{3}^{G}, \chi_{\sim} \underline{3}^{G}$
  - there should be an irrep  $\Phi$ , the product  $\Phi^n$  should contain a <u>3</u><sup>G</sup>
- renormalizable scalar potential should be of form:  $V=V(\Phi)+V(\chi)+(\Phi\Phi)_1(\chi\chi)_1$ .



## Scan for Small Groups

- using the computer algebra system GAP and its SmallGroups catalogue, we have checked all groups with size smaller than 1000 (11,758,814 groups) and we have found a number of candidates:
- no candidates for T<sub>7</sub> or Δ(27), maybe because here 3 is complex and there are more couplings that have to be forbidden (also smaller number of possible extensions)
- all candidates in list have nontrivial centre(=elements that commute with all other elements), not necessary true for all groups(see e.g. (S<sub>3</sub>)<sup>4</sup>×A<sub>4</sub> studied in Babu/Gabriel 2010)

| Subgroup $H$ | Order of $G$ | GAP              | Structure Description                           | Z(G)        |
|--------------|--------------|------------------|-------------------------------------------------|-------------|
|              | 96           | 204              | $Q_8 \rtimes A_4$                               | $Z_2$       |
|              | 288          | 860              | $T' \rtimes A_4$                                | $Z_2$       |
|              | 384          | 617, 20123       | $((Z_2 \times Q_8) \rtimes Z_2) \rtimes A_4$    | $Z_2$       |
| $A_4$        | 576          | 8273             | $(Z_2.S_4) \rtimes A_4$                         | $Z_2$       |
|              | 769          | 1083945          | $(Z_4.Z_4^2) \rtimes A_4$                       | $Z_4$       |
|              | 108          | 1085279          | $((Z_2 \times Q_{16}) \rtimes Z_2) \rtimes A_4$ | $Z_2$       |
|              | 192          | 1494             | $Q_8 \rtimes S_4$                               | $Z_2$       |
|              | 294          | 18133, 20092     | $(Z_2 \times Q_8) \rtimes S_4$                  | $Z_2$       |
|              | 304          | 20096            | $((Z_4 \times Z_2) \rtimes Z_2) \rtimes S_4$    | $Z_4$       |
|              | 576          | 8282             | $T' \rtimes S_4$                                | $Z_2$       |
| $S_4$        | 570          | 8480             | $(Z_3 \times Q_8) \rtimes S_4$                  | $Z_6$       |
|              | 768          | 1086052, 1086053 | $((Z_2 \times Q_8) \rtimes Z_2) \rtimes S_4$    | $Z_2$       |
|              | 960          | 11114            | $(Z_5 \times Q_8) \rtimes S_4$                  | $Z_{10}$    |
|              | 192          | 1022             | $Q_8 \rtimes T'$                                | $Z_{2}^{2}$ |
| T'           | 648          | 533              | $\Delta(27) \rtimes T'$                         | $Z_3$       |
| Ţ            | 768          | 1083573, 1085187 | $((Z_2 \times Q_8) \rtimes Z_2) \rtimes T'$     | $Z_{2}^{2}$ |

Groups of the Structure  $G \simeq N \rtimes H$ , H is subgroup of G defined by an homomorphism  $\varphi: H \rightarrow Aut(N)$  that defines the product  $(n1,h1)^*(n2,h2) = (n1\varphi h1(n2),h1 h2)$ 

## Scan for Small Groups

- using the computer algebra system GAP and its SmallGroups catalogue, we have checked all groups with size smaller than 1000 (11,758,814 groups) and we have found a number of candidates:
- no candidates for T<sub>7</sub> or Δ(27), maybe because here 3 is complex and there are more couplings that have to be forbidden (also smaller number of possible extensions)
- all candidates in list have nontrivial centre(=elements that commute with all other elements), not necessary true for all groups(see e.g. (S<sub>3</sub>)<sup>4</sup>×A<sub>4</sub> studied in Babu/Gabriel 2010)

|                    | 1            | 1         |                                         |
|--------------------|--------------|-----------|-----------------------------------------|
| Quotient Group $H$ | Order of $G$ | GAP       | Structure Description                   |
|                    | 96           | 201       | $Z_2.(Z_2^2 \times A_4)$                |
| $A_4$              | 144          | 127       | $Z_2.(A_4 \times S_3)$                  |
|                    | 192          | 1017      | $Z_2.(D_8 \times A_4)$                  |
|                    | 96           | 67, 192   | $Z_4.S_4$                               |
|                    | 144          | 121, 122  | $Z_6.S_4$                               |
| S.                 | 192          | 187, 963  | $Z_8.S_4$                               |
|                    | 192          | 987, 988  | $Z_2.((Z_2^2 \times A_4) \rtimes Z_2)$  |
|                    | 192          | 1483,1484 | $Z_2.(Z_2^2 \times S_4)$                |
|                    | 192          | 1492      | $Z_2.((Z_2^4 \rtimes Z_3) \rtimes Z_2)$ |
| <i>T'</i>          | 192          | 1007      | $Z_2^2.(Z_2^2 \times A_4)$              |

Groups N.H for which H is not a subgroup of G, with  $G/N \simeq H$ , as this is enough to ensure the existence of the relevant representations(e.g. T'/Z<sub>2</sub>=A<sub>4</sub>).

## Smallest Group

The smallest candidate group that contains  $A_4$  as a subgroup is the semidirect product of the quaternion group  $Q_8$ 

$$\langle X, Y | X^4 = 1, X^2 = Y^2, Y^{-1}XY = X^{-1} \rangle$$

with  $A_4$ 

$$\left\langle S, T | S^2 = T^3 = (ST)^3 = 1 \right\rangle$$



defined by the additional relations

$$SXS^{-1} = X, \quad SYS^{-1} = Y^{-1}, \quad TXT^{-1} = YX, \quad TYT^{-1} = X.$$

| Representations:        |                     | 1 | T          | SYX | SY | $Y^2$ | $T^2$      | TY           | S  | SX | X  | STYT        |
|-------------------------|---------------------|---|------------|-----|----|-------|------------|--------------|----|----|----|-------------|
|                         | <u>1</u> 1          | 1 | 1          | 1   | 1  | 1     | 1          | 1            | 1  | 1  | 1  | 1           |
| unfaithful A4 reps for  | $\underline{1}_{2}$ | 1 | ω          | 1   | 1  | 1     | $\omega^2$ | ω            | 1  | 1  | 1  | $\omega^2$  |
| leptons, $\chi$         | $\underline{1}_{3}$ | 1 | $\omega^2$ | 1   | 1  | 1     | ω          | $\omega^2$   | 1  | 1  | 1  | ω           |
|                         | $\underline{3}_1$   | 3 |            | -1  | -1 | 3     | •          | •            | -1 | -1 | 3  |             |
|                         | $\underline{3}_2$   | 3 |            | 3   | -1 | 3     | •          |              | -1 | -1 | -1 |             |
|                         | $\underline{33}$    | 3 |            | -1  | 3  | 3     |            |              | -1 | -1 | -1 |             |
|                         | $\underline{3}_4$   | 3 |            | -1  | -1 | 3     |            |              | 3  | -1 | -1 |             |
|                         | $\underline{35}$    | 3 |            | -1  | -1 | 3     |            |              | -1 | 3  | -1 |             |
| faithful rep for $\Phi$ | $(\underline{4}_1)$ | 4 | 1          |     |    | -4    | 1          | -1           |    |    |    | -1          |
|                         | $\underline{42}$    | 4 | $\omega^2$ |     |    | -4    | ω          | - $\omega^2$ |    |    |    | $-\omega$   |
|                         | $\underline{43}$    | 4 | ω          |     |    | -4    | $\omega^2$ | $-\omega$    |    |    |    | $-\omega^2$ |

## Smallest Group

The smallest candidate group that contains  $A_4$  as a subgroup is the semidirect product of the quaternion group  $Q_8$ 

$$\langle X, Y | X^4 = 1, X^2 = Y^2, Y^{-1}XY = X^{-1} \rangle$$

with  $A_4$ 

$$\left\langle S, T | S^2 = T^3 = (ST)^3 = 1 \right\rangle$$



defined by the additional relations

$$SXS^{-1} = X, \quad SYS^{-1} = Y^{-1}, \quad TXT^{-1} = YX, \quad TYT^{-1} = X.$$

Representations:

$$\underline{\mathbf{3}_{i}} \times \underline{\mathbf{3}_{i}} = \underline{\mathbf{1}_{1}} + \underline{\mathbf{1}_{2}} + \underline{\mathbf{1}_{3}} + \underline{\mathbf{3}_{iS}} + \underline{\mathbf{3}_{iA}}$$

$$\underline{\mathbf{3}_{i}} \times \underline{\mathbf{3}_{j}} = \sum_{\substack{5 \\ k \neq i, j}}^{5} \underline{\mathbf{3}_{k}} \qquad (i \neq j)$$

$$\underline{3}_{i} \times \underline{4}_{j} = \underline{4}_{1} + \underline{4}_{2} + \underline{4}_{3}$$

$$\underline{4}_{1} \times \underline{4}_{1} = \underline{1}_{1S} + \underline{3}_{1A} + \underline{3}_{2S} + \underline{3}_{3S} + \underline{3}_{4S} + \underline{3}_{5A}$$

$$\underline{4}_{1} \times \underline{4}_{2} = \underline{1}_{2S} + \underline{3}_{1A} + \underline{3}_{2S} + \underline{3}_{3S} + \underline{3}_{4S} + \underline{3}_{5A}$$

|     |                     | S                                                                                                                                  | Т                                                                                 | Х                                                                                                                                  | Y                                                                                                                      |
|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|     | $\underline{1}_1$   |                                                                                                                                    |                                                                                   |                                                                                                                                    |                                                                                                                        |
|     | $\underline{1}_{2}$ | 1                                                                                                                                  | $\omega$                                                                          |                                                                                                                                    | -1 $-3$ $1$                                                                                                            |
|     | $\underline{1}_{3}$ | 1                                                                                                                                  | $\omega^2$                                                                        | 1                                                                                                                                  |                                                                                                                        |
| eps | <u>3</u> 1          | $\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$                                               | $\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)$ | $\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$                                                 | $\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$                                     |
| ,   | <u>4</u> 1          | $\left  \left( \begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{array} \right) \right $ | $\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                        | $\left[ \left( \begin{array}{rrrr} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{array} \right) \right]$ | $\left  \begin{array}{ccccccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array} \right $ |

faithful representation Φ is what we
 were looking for.
 (Φ Φ) only contains non-trivial
 contraction of the A4 subgroup.

| particle               | $SU(3)_c$ | $SU(2)_L$ | $U(1)_Y$ | $Q_8 \rtimes A_4$                                     | $Z_4$ |
|------------------------|-----------|-----------|----------|-------------------------------------------------------|-------|
| $\ell$                 | 1         | 2         | -1/2     | $\underline{3}_1$                                     | i     |
| $e^c + \mu^c + \tau^c$ | 1         | 1         | 1        | $\underline{1}_1 + \underline{1}_2 + \underline{1}_3$ | —i    |
| Η                      | 1         | 2         | 1/2      | $\underline{1}_1$                                     | 1     |
| $\chi$                 | 1         | 1         | 0        | $\underline{3}_1$                                     | 1     |
| $\phi_1$               | 1         | 1         | 0        | $\underline{4}_{1}$                                   | 1     |
| $\phi_2$               | 1         | 1         | 0        | $\underline{41}$                                      | -1    |

| $\langle \chi  angle = (v', v', v')^T,$                                                   |
|-------------------------------------------------------------------------------------------|
| $\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} (a, a, b, -b)^T,$                            |
| $\langle \phi_2 \rangle = \frac{1}{\sqrt{2}} (c, c, d, -d)^T$                             |
| $\langle \phi_1 \phi_2 \rangle_{\underline{3}_1} \rangle = \frac{1}{2} (bc - ad, 0, 0)^T$ |
| $\langle (\phi_1 \phi_2)_{\underline{1}} \rangle = \frac{1}{2}(ac+bd)$                    |

| particle               | $SU(3)_c$ | $SU(2)_L$ | $U(1)_Y$ | $Q_8 \rtimes A_4$                                     | $Z_4$ |
|------------------------|-----------|-----------|----------|-------------------------------------------------------|-------|
| l                      | 1         | 2         | -1/2     | $\underline{3}_1$                                     | i     |
| $e^c + \mu^c + \tau^c$ | 1         | 1         | 1        | $\underline{1}_1 + \underline{1}_2 + \underline{1}_3$ | —j    |
| H                      | 1         | 2         | 1/2      | $\underline{1}_1$                                     | 1     |
| $\chi$                 | 1         | 1         | 0        | $\underline{3}_1$                                     | 1     |
| $\phi_1$               | 1         | 1         | 0        | $\underline{41}$                                      | 1     |
| $\phi_2$               | 1         | 1         | 0        | $\underline{4}_{1}$                                   | ]     |

particle  $SU(3)_c$  $SU(2)_L$  $U(1)_Y \parallel$  $Q_8 \rtimes A_4$  $Z_4$  $\ell$ -1/2i —i 1 1 2 $\underline{3}_1$ 1  $e^c + \mu^c + \tau^c$ 1  $\underline{1}_1 + \underline{1}_2 + \underline{1}_3$ H1 1/22 $\underline{1}_{1}$  $\frac{\chi}{\phi_1}$ 1 0  $\underline{3}_1$ 1 1 -1 1  $\underline{4}_{1}$ 0  $\phi_2$ 1 0  $\underline{41}$ 1

$$\langle \chi \rangle = (v', v', v')^T,$$
$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} (a, a, b, -b)^T,$$
$$\text{/EVs:} \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} (c, c, d, -d)^T$$
$$(\phi_1 \phi_2)_{\underline{\mathbf{3}}_1} \rangle = \frac{1}{2} (bc - ad, 0, 0)^T$$
$$\langle (\phi_1 \phi_2)_{\underline{\mathbf{1}}_1} \rangle = \frac{1}{2} (ac + bd)$$

LO charged lepton masses:

 $\mathcal{L}_{e}^{(5)} = y_{e}(\ell\chi)_{\underline{1}} e^{c} \tilde{H} / \Lambda + y_{\mu}(\ell\chi)_{\underline{1}} \mu^{c} \tilde{H} / \Lambda + y_{\tau}(\ell\chi)_{\underline{1}} \tau^{c} \tilde{H} / \Lambda + \text{h.c.} ,$ 

$$M_E \sim \begin{pmatrix} y_e & y_\mu & y_\tau \\ y_e & \omega y_\mu & \omega^2 y_\tau \\ y_e & \omega^2 y_\mu & \omega y_\tau \end{pmatrix}$$

particle  $SU(3)_c$  $SU(2)_L$  $U(1)_Y \parallel$  $Z_4$  $Q_8 \rtimes A_4$  $\ell$ -1/22i  $\underline{3}_1$ 1  $e^c + \mu^c + \tau^c$ -i1  $\underline{1}_1 + \underline{1}_2 + \underline{1}_3$ 1 1 H1 1 21/2 $\underline{1}_1$ Ì  $\frac{\chi}{\phi_1}$  $\underline{3}_1$ 1 1 0 1 1 0  $\underline{4}_{1}$ 1  $\phi_2$ 1 1 0  $\underline{41}$ -1

$$\langle \chi \rangle = (v', v', v')^{T},$$
$$\langle \phi_{1} \rangle = \frac{1}{\sqrt{2}} (a, a, b, -b)^{T},$$
$$\forall \mathsf{EVs:} \qquad \langle \phi_{2} \rangle = \frac{1}{\sqrt{2}} (c, c, d, -d)^{T},$$
$$\langle (\phi_{1}\phi_{2})\underline{\mathbf{3}}_{1} \rangle = \frac{1}{2} (bc - ad, 0, 0)^{T},$$
$$\langle (\phi_{1}\phi_{2})\underline{\mathbf{1}}_{1} \rangle = \frac{1}{2} (ac + bd),$$

LO charged lepton masses:

(symmetry U accidental)

 $\overline{\langle \chi \rangle} = (v', v', v')^T,$ 

 $\boldsymbol{Z}$ 

| particle               | $SU(3)_c$ | $SU(2)_L$ | $U(1)_Y$ | $Q_8 \rtimes A_4$                                     | $Z_4$               | $\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} (a, a, b, -b)^T,$                    |
|------------------------|-----------|-----------|----------|-------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|
| l                      | 1         | 2         | -1/2     | $\underline{3}_1$                                     | i                   | VEVs: 1                                                                           |
| $e^c + \mu^c + \tau^c$ | 1         | 1         | 1        | $\underline{1}_1 + \underline{1}_2 + \underline{1}_3$ | —i                  | $\langle \phi_2 \rangle = \frac{1}{\sqrt{2}} (c, c, d, -d)^T$                     |
| H                      | 1         | 2         | 1/2      | $\underline{1}$                                       | 1                   | $\sqrt{2}$                                                                        |
| $\chi$                 | 1         | 1         | 0        | $\underline{3}_1$                                     | 1                   | $\langle (\phi_1 \phi_2) {\bf q}_{\perp} \rangle = \frac{1}{2} (bc - ad, 0, 0)^T$ |
| $\phi_1$               | 1         | 1         | 0        | $\underline{4}_{1}$                                   | 1                   | $(1)^{1} 2^{1} 2^{1}$                                                             |
| $\phi_2$               | 1         | 1         | 0        | $\underline{41}$                                      | $\left  -1 \right $ | $\langle (\phi_1 \phi_2)_{1} \rangle = \frac{1}{2}(ac+bd)$                        |

LO charged lepton masses:

$$\mathcal{L}_{e}^{(5)} = y_{e}(\ell\chi)_{\underline{1}} e^{c} \tilde{H} / \Lambda + y_{\mu}(\ell\chi)_{\underline{1}} \mu^{c} \tilde{H} / \Lambda + y_{\tau}(\ell\chi)_{\underline{1}} \tau^{c} \tilde{H} / \Lambda + \text{h.c.} ,$$

LO neutral lepton masses:

$$\mathcal{L}_{\nu}^{(7)} = x_a(\ell H \ell H)_{\underline{1}}(\phi_1 \phi_2)_{\underline{1}}/\Lambda^3 + x_d(\ell H \ell H)_{\underline{3}} \cdot (\phi_1 \phi_2)_{\underline{3}}/\Lambda^3 + \text{h.c.}$$

 $\circ$  additional 4<sub>1</sub> necessary to get correct symmetry breaking (otherwise only breaking to A<sub>4</sub>)

- same # of d.o.f. as in case of complex triplet and singlet, no additional driving fields necessary
- Iow flavour symmetry breaking scale possible, testable

### Scalar Potential & Vacuum Alignment

The most general scalar potential invariant under the flavour symmetry is given by  $V(\chi, \phi_1, \phi_2) = V_{\chi}(\chi) + V_{\phi}(\phi_1, \phi_2) + V_{\min}(\chi, \phi_1, \phi_2)$ 

with

$$\begin{aligned}
 V_{\phi}(\phi_{1},\phi_{2}) &= \mu_{1}^{2}(\phi_{1}\phi_{1})\underline{1}_{1} + \alpha_{1}(\phi_{1}\phi_{1})\underline{1}_{1}^{2} + \sum_{i=2,3} \alpha_{i}(\phi_{1}\phi_{1})\underline{3}_{i} \cdot (\phi_{1}\phi_{1})\underline{3}_{i} \\
 + \mu_{2}^{2}(\phi_{2}\phi_{2})\underline{1}_{1} + \beta_{1}(\phi_{2}\phi_{2})\underline{1}_{1}^{2} + \sum_{i=2,3} \beta_{i}(\phi_{2}\phi_{2})\underline{3}_{i} \cdot (\phi_{2}\phi_{2})\underline{3}_{i} \\
 + \gamma_{1}(\phi_{1}\phi_{1})\underline{1}_{1}(\phi_{2}\phi_{2})\underline{1}_{1} + \sum_{i=2,3,4} \gamma_{i}(\phi_{1}\phi_{1})\underline{3}_{i} \cdot (\phi_{2}\phi_{2})\underline{3}_{i} \\
 V_{\chi}(\chi) &= \mu_{3}^{2}(\chi\chi)\underline{1}_{1} + \rho_{1}(\chi\chi\chi)\underline{1}_{1} + \lambda_{1}(\chi\chi)\underline{1}_{1}^{2} + \lambda_{2}(\chi\chi)\underline{1}_{2}(\chi\chi)\underline{1}_{3} \\
 V_{\min}(\chi,\phi_{1},\phi_{2}) &= \zeta_{13}(\phi_{1}\phi_{1})\underline{1}_{1}(\chi\chi)\underline{1}_{1} + \zeta_{23}(\phi_{2}\phi_{2})\underline{1}_{1}(\chi\chi)\underline{1}_{1}
 \end{aligned}$$

- Potential has an accidental symmetry  $[(Q_8 \rtimes A_4) \times A_4] \times Z_4$ 
  - $\circ$  invariant under independent transformations of  $\Phi$  and  $\chi$
- note that couplings such as  $\chi \cdot (\phi_1 \phi_2) \underline{\mathbf{3}}_{\mathbf{1}}$  are forbidden by the auxiliary  $Z_4$  symmetry that separates the charged and neutral lepton sectors

### Scalar Potential & Vacuum Alignment

#### Minimum Conditions

 $\begin{aligned} \overline{a \left( \alpha_{+} \left( a^{2} + b^{2} \right) + \alpha_{-} \left( a^{2} - b^{2} \right) + \gamma_{+} \left( c^{2} + d^{2} \right) + \gamma_{-} \left( c^{2} - d^{2} \right) + U_{1} \right) + \Gamma bcd &= 0 \\ b \left( \alpha_{+} \left( a^{2} + b^{2} \right) - \alpha_{-} \left( a^{2} - b^{2} \right) + \gamma_{+} \left( c^{2} + d^{2} \right) - \gamma_{-} \left( c^{2} - d^{2} \right) + U_{1} \right) + \Gamma acd &= 0 \\ c \left( \beta_{+} \left( c^{2} + d^{2} \right) + \beta_{-} \left( c^{2} - d^{2} \right) + \gamma_{+} \left( a^{2} + b^{2} \right) + \gamma_{-} \left( a^{2} - b^{2} \right) + U_{2} \right) + \Gamma abd &= 0 \\ d \left( \beta_{+} \left( c^{2} + d^{2} \right) - \beta_{-} \left( c^{2} - d^{2} \right) + \gamma_{+} \left( a^{2} + b^{2} \right) - \gamma_{-} \left( a^{2} - b^{2} \right) + U_{2} \right) + \Gamma abc &= 0 \\ v' \left( 4 \sqrt{3} \lambda_{1} v'^{2} + 3 \rho_{1} v' + 2 \mu_{3}^{2} + \zeta_{13} \left( a^{2} + b^{2} \right) + \zeta_{23} \left( c^{2} + d^{2} \right) \right) = 0 \end{aligned}$ 

with

 $\xi_{+} = \frac{\xi_{1}}{2}, \xi_{-} = \frac{\xi_{2} + \xi_{3}}{2\sqrt{3}} \text{ for } \xi = \alpha, \beta$  $\gamma_{+} = \frac{\sqrt{3}\gamma_{1} + \gamma_{4}}{4\sqrt{3}}, \quad \gamma_{-} = \frac{\gamma_{2} + \gamma_{3}}{4\sqrt{3}} \text{ and } \Gamma = \frac{\gamma_{4}}{\sqrt{3}}$ 

 eleven minimization conditions reduce to these 5 equations for 5 VEVs there is therefore generally a solution

 we have performed a numerical study to show that there is finite region of paramet<u>er</u> space where the desired vacuum configuration is the global minimum

| $\langle \chi \rangle \sim (1,1,1)$                                             | $\langle \chi \rangle \sim (I,I,I)$                                                           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\langle \Phi_1 \Phi_2 \rangle \sim (1,0,0)$                                    | $\langle \Phi_1 \Phi_2 \rangle \sim (I,I,I)$                                                  |
| TBM                                                                             | no TBM                                                                                        |
| $\langle \chi \rangle ~(1,0,0)  \langle \Phi_1 \Phi_2 \rangle ~(1,0,0)  no TBM$ | $\langle \chi \rangle \sim (1,0,0)$<br>$\langle \Phi_1 \Phi_2 \rangle \sim (1,1,1)$<br>no TBM |

**∱** λ<sub>i</sub>

### Higher Order Corrections

MLO Corrections to vacuum potential

$$V^{(5)} = \sum_{L,M=1}^{2} \sum_{i,j=2}^{4} \frac{\delta_{ij}^{(LM)}}{\Lambda} \chi \cdot \left\{ (\phi_L \phi_L) \underline{\mathbf{3}}_{\mathbf{i}} \cdot (\phi_M \phi_M) \underline{\mathbf{3}}_{\mathbf{j}} \right\}_{\underline{\mathbf{3}}_{\mathbf{1}}} + \frac{\chi^3}{\Lambda} \left( \delta_1^{(3)} \chi^2 + \delta_2^{(3)} (\phi_1 \phi_1) \underline{\mathbf{1}}_{\mathbf{1}} + \delta_3^{(3)} (\phi_2 \phi_2) \underline{\mathbf{1}}_{\mathbf{1}} \right) \qquad \delta_{ij}^{(LM)} = 0 \text{ for } i \ge j$$

leads to shifts in VEVs

$$\langle \chi \rangle = (v' + \delta v'_1, v' + \delta v'_2, v' + \delta v'_2)^T,$$
  
$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} (a + \delta a_1, a + \delta a_2, b + \delta a_3, -b + \delta a_4)^T,$$
  
$$\langle \phi_2 \rangle = \frac{1}{\sqrt{2}} (c + \delta b_1, c + \delta b_2, d + \delta b_3, -d + \delta b_4)^T$$

ø generic size of shifts

 $\frac{\delta u}{u} \sim \frac{u}{\Lambda}$   $\langle \chi_2 \rangle - \langle \chi_3 \rangle = \mathcal{O}(1/\Lambda^2)$ VEV alignment not destroyed!



generic size of shifts for scalar potential parameters of order one

### **Higher Order Corrections**



- $\circ$  sin<sup>2</sup> $\Theta_{13}$ ≈.03 can be accommodated at NLO
- or by introducing additional non-trivial singlet field  $\xi \sim (I_2,i)$  giving trimaximal mixing[does not destroy VEV alignment]

[Lin'10, Shimizu, Tanimoto, Watanabe'11, Luhn, King'11]

### Flavour Breaking at the Electroweak Scale

- mechanism allows for low scale flavour breaking, testability of alignment sector
- Change model such that  $\chi$  is an EW doublet,  $\Phi$ s singlet, add messenger fields to make it renormalizable
- neutrino masses are generated at one-loop level  $\mathcal{L}_{\nu} = h_1 L \eta_1 S + h_2 L \eta_2 S + \sqrt{3} M_S S S + \text{h.c.} .$   $V_{\eta,\phi} = \lambda_3 (\phi_1 \phi_2) \underline{1}_1 (\eta_3^{\dagger} \eta_1) \underline{1}_1 + \lambda_4 (\phi_1 \phi_2) \underline{3}_1 (\eta_3^{\dagger} \eta_2) \underline{3}_1 + \text{h.c.} .$   $V_{\eta,\chi} = \lambda_1 (\chi^t \tau_2 \vec{\tau} \chi) \underline{1}_1 (\eta_1^t \tau_2 \vec{\tau} \eta_3) \underline{1}_1 + \lambda_2 e^{i\alpha_\lambda} (\chi^t \tau_2 \vec{\tau} \chi) \underline{3}_1 (\eta_2^t \tau_2 \vec{\tau} \eta_3) \underline{3}_1 + \text{h.c.} .$ 
  - neutrino masses small  $m_{\nu} \sim \frac{1}{16\pi^2} h^2 \left(\frac{\delta M_{\eta}^2}{M_n^2}\right)^2 \frac{M_{\eta}^2}{M_S} \sim 1 \,\mathrm{eV}$  for  $h \sim \frac{\delta M_{\eta}^2}{M_n^2} \sim 10^{-2}, M_{\eta} \sim 100 \,\mathrm{GeV}, M_S \sim 1 \,\mathrm{TeV}$
  - flavour structure
- TBM for  $\lambda_2=0$ , non-zero  $\Theta_{13}$  can be generated

$$m_{\nu} = \begin{pmatrix} \hat{a} & \hat{e} e^{i\alpha_{\lambda}} & \hat{e} e^{i\alpha_{\lambda}} \\ . & \hat{a} + \hat{b} e^{i\alpha_{\lambda}} & \hat{d} + \hat{e} e^{i\alpha_{\lambda}} \\ . & . & \hat{a} \end{pmatrix}$$
$$I(m_1, m_2, m_3, m_4) = -\frac{1}{16-2} \sum_i \frac{m_i^2 \log\left(\frac{m_i^2}{\mu^2}\right)}{\Pi_{\mu_i} (m_i^2 - m_i^2)}.$$

 $10\pi^2 - m_{k\neq i} (m_i^2 - m_k^2)$ 

| fermion  | $SU(2)_L$ | $U(1)_Y$ | $Q_8 \rtimes A_4$ | $Z_4$ |
|----------|-----------|----------|-------------------|-------|
| S        | 1         | 0        | $\underline{32}$  | -1    |
| scalars  | $SU(2)_L$ | $U(1)_Y$ | $Q_8 \rtimes A_4$ | $Z_4$ |
| $\eta_1$ | 2         | 1/2      | $\underline{35}$  | i     |
| $\eta_2$ | 2         | 1/2      | $\underline{3}_4$ | i     |
| $\eta_3$ | 2         | 1/2      | $\underline{35}$  | —i    |



$$\hat{a} = \frac{\sqrt{3}}{18} h_1^2 \lambda_3 \lambda_1 v^2 (ac + bd) M_S I (M_1, M_1, M_3, M_S)$$
$$\hat{d} = \frac{\sqrt{3}}{36} h_1 h_2 \lambda_4 \lambda_1 v^2 (bc - ad) M_S I (M_1, M_2, M_3, M_S)$$
$$\hat{b} = \frac{1}{18} h_2^2 \lambda_4 \lambda_2 v^2 (bc - ad) M_S I (M_2, M_2, M_3, M_S)$$
$$\hat{e} = \frac{1}{36} h_1 h_2 \lambda_3 \lambda_2 v^2 (ac + bd) M_S I (M_1, M_2, M_3, M_S)$$

[MH, M. Lindner, M. Schmidt, in preparation]

### Flavour Breaking at the EW Scale-Mixing





- TBM for b=e=0
- e induces 13 rotation UPMNS = UTMBU13
- b induces 12 rotation U<sub>PMNS</sub> = U<sub>TMB</sub>U<sub>12</sub>
- $\sin^2 \Theta_{13} \approx .03$  needs  $e/a \approx .1$

$$m_{\nu} = \begin{pmatrix} \hat{a} & \hat{e} e^{i\alpha_{\lambda}} & \hat{e} e^{i\alpha_{\lambda}} \\ . & \hat{a} + \hat{b} e^{i\alpha_{\lambda}} & \hat{d} + \hat{e} e^{i\alpha_{\lambda}} \\ . & . & \hat{a} \end{pmatrix}$$

### Flavour Breaking at the EW Scale-Dark Matter

• model has a dark matter candiate as there is an accidental symmetry

$$\eta_i \to -\eta_i \qquad S \to -S$$

at the renormalizable level, and a remnant symmetry of the Z<sub>4</sub> part of the flavour symmetry  $A: L \to -L$   $e^c \to -e^c$   $\eta_i \to -\eta_i$ 

decay is mediated by operators  $\eta_i \mathcal{O}_{SM}^{\mathcal{A}=-1} \langle \mathcal{O}_{\phi_k \phi_l} \rangle$ , where  $O_{SM}$  must be an EW doublet and Lorentz singlet. The insertion of at least two  $\Phi$ s is needed to form a flavour singlet. The lowest dimensional operators are given by:

- the lifetime induced by the dim. 6 SM operators  $\frac{\eta_i \mathcal{O}_{SM}^{\mathcal{A}=-1}}{\Lambda_B^3} \frac{\langle \phi_k \phi_l \rangle}{\Lambda_F^2}$  is given by  $\Gamma^{-1} \sim \frac{8\pi \Lambda_B^6}{m_p^7} \left( \frac{\Lambda_F^2}{\langle \phi_k \phi_l \rangle} \right)^2$
- the bound of  $\Gamma^{-1} \gtrsim 10^{26} s$  translates into  $(\Lambda_B^3 \Lambda_F^2)^{1/5} \gtrsim 6 \cdot 10^7 \text{GeV} \left(\frac{m_\eta}{1 \text{ TeV}}\right)^{7/10} \left(\frac{\langle \phi_k \phi_l \rangle}{(100 \text{ GeV})^2}\right)^{1/5}$ .
- DM abundance produced in same way as normal Inert Dark Matter
- the fermionic DM candidate S is stabilized in an analogous way, if it is the lightest

### Flavour Breaking at the EW Scale-LFV&Higgs

 in models with radiative neutrino mass, lepton flavour violating processes put constraints

$$Br(\mu \to e\gamma) = \frac{3\alpha}{64\pi (G_F m_0^2)^2} C^4$$

 $C^{2} = \left| \sum_{i,J} h_{\mu iJ} h_{eiJ}^{*} F_{2}(M_{i}^{2}/m_{J}^{2}) \right| \quad \text{and} \quad F_{2}(t) = \frac{1 - 6t + 3t^{2} + 2t^{3} - 6t^{2} \ln t}{6(1 - t)^{4}}.$ 

implies

$$\mu$$

 $C^4 \sim 1.5 \cdot 10^{-8}$  for  $M_S = M_0 = 100 \,\text{GeV}.$ 

• flavour symmetry gives an additional suppression

 $L\sigma_{\mu\nu}F^{\mu\nu}e^{c}\tilde{H}/M^{2}\sim(\underline{\mathbf{3}_{1}},1)$ 

 $Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11}$ 

- needs additional mass insertions, natural suppression  $C^4 \sim \left(\frac{\delta M_\eta^2}{M_n^2}\right)^4 \sim 10^{-8}$
- LFVs mediated by 4 fermi interactions loop suppressed & selection rule  $\Delta L_e \Delta L_\mu \Delta L_\tau = \pm 2$



### Flavour Breaking at the EW Scale-LFV&Higgs

- in the charged lepton sector, the VEV (I,I,I) leaves the Z3 subgroup generated by T go to a basis where T is diagonal  $\Omega_e^{\dagger}\rho(T)\Omega_e = \operatorname{diag}(1,\omega^2\omega)$   $\Omega_T \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}$

 $(L_e, L_\mu, L_\tau)^T = \Omega_T L \sim (1, \omega^2, \omega)^T \quad (\varphi, \varphi', \varphi'')^T = \Omega_T \chi \sim (1, \omega^2, \omega)^T \qquad (e^c, \mu^c, \tau^c)^T \sim (1, \omega, \omega^2)^T$ 

- only phi gets a VEV and plays the role of the SM Higgs  $\tilde{arphi} (y_e L_e e^c + y_\mu L_\mu \mu^c + y_ au L_ au au^c)$
- the other two Higgs fields are inert and have flavour off-diagonal couplings  $\tilde{\varphi}'\left(y_e L_\tau e^c + y_\mu L_e \mu^c + y_\tau L_\mu \tau^c\right) \qquad \qquad \tilde{\varphi}''\left(y_e L_\mu e^c + y_\mu L_\tau \mu^c + y_\tau L_e \tau^c\right)$
- this generates LFV 4f operators ( with the selection rule  $\Delta L_e \Delta L_\mu \Delta L_\tau = \pm 2$ )

the most constraining process is  $Br(\tau^- \to \mu^+ e^- e^+) \sim 10^{-7} \left( \frac{2 \,\mathrm{GeV}}{M_{\varphi',\varphi''}^4} \right)$ 



Higgs admixture of  $\varphi$ ,  $\Phi$  singlets, in the limit H=  $\varphi$ tree-level branching ratios same as SM, loop-processes altered

in the quark sector, no mixing at LO, Cabibbo angle has to be generated by cross-talk to neutrino sector flavons 

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

has access to groups catalogue of GAP, which contains all groups one would ever want to use

| Initialization                                                     |                                               |    |                        |                     |  |  |
|--------------------------------------------------------------------|-----------------------------------------------|----|------------------------|---------------------|--|--|
| <pre>In[8]:= Needs["Discrete`ModelBuildingTools`"];</pre>          |                                               |    |                        |                     |  |  |
| - 31 - 13 - 13 - 13 - 13 - 13 - 13 - 13                            |                                               |    |                        |                     |  |  |
| <pre>In[11]:= Group = MBloadGAPGroup["AlternatingGroup(4)"];</pre> |                                               |    |                        |                     |  |  |
|                                                                    | starting GAP generating $AlternatingGroup(4)$ |    |                        |                     |  |  |
|                                                                    | finished                                      |    |                        |                     |  |  |
| StructureDescription:A4                                            |                                               |    |                        |                     |  |  |
|                                                                    | Size of Group:12                              |    |                        |                     |  |  |
|                                                                    | Number of irreps: 4                           |    |                        |                     |  |  |
|                                                                    | Dimensions of irreps:<br>1 2 3 4              |    |                        |                     |  |  |
|                                                                    | 1                                             | 1  | 1 3                    |                     |  |  |
| Character Tables                                                   |                                               |    |                        |                     |  |  |
| Character Table:                                                   |                                               |    |                        |                     |  |  |
|                                                                    | T                                             | 1  | 1                      | T                   |  |  |
|                                                                    | 1                                             | 1  | $e^{-\frac{2i\pi}{3}}$ | e <sup>21π</sup> /3 |  |  |
|                                                                    |                                               |    | <b>2</b> i π           | <b>2</b> i π        |  |  |
|                                                                    | 1                                             | 1  | e 3                    | @ 3                 |  |  |
|                                                                    | 3                                             | -1 | 0                      | 0                   |  |  |

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.

$$\begin{bmatrix} In[193] := \chi = MBgetRepVector[Group, 4, \chic] \\ L = MBgetRepVector[Group, 4, Lc] \\ Dut[193] = \{ \{ \}, \{ \}, \{ \}, \{ \}, \{ \{ \chic1, \chic2, \chic3 \} \} \} \\ Dut[194] = \{ \{ \}, \{ \}, \{ \}, \{ \}, \{ \{ Lc1, Lc2, Lc3 \} \} \} \\ In[197] := MBmultiply[Group, \{ \chi, \chi, \chi, \chi, L, L \}][[1]] \\ In[197] := MBmultiply[Group, \{ \chi, \chi, \chi, \chi, L, L \}][[1]] \\ Out[197] = \left\{ \left\{ \left\{ Lc1^{2} + Lc2^{2} + Lc3^{2} \right\} \chic1 \chic2 \chic3 \right\}, \\ \left\{ \frac{1}{3} (Lc2 Lc3 \chic1 + Lc1 Lc3 \chic2 + Lc1 Lc2 \chic3) (\chic1^{2} + \chic2^{2} + \chic3^{2}) \right\}, \\ \left\{ \frac{Lc1 Lc3 \chic2 \chic3^{2} + Lc2 \chic1 (Lc3 \chic2^{2} + Lc1 \chic1 \chic3)}{\sqrt{3}} \right\}, \\ \left\{ \frac{Lc2 Lc3 \chic1 \chic3^{2} + Lc1 \chic2 (Lc3 \chic1^{2} + Lc2 \chic2 \chic3))}{\sqrt{3}} \right\}, \\ \left\{ \frac{Lc2 Lc3 \chic1 \chic3^{2} + Lc1 \chic2 (Lc3 \chic1^{2} + Lc2 \chic2 \chic3))}{\sqrt{3}} \right\}, \\ \left\{ \frac{1}{6 \sqrt{3}} (Lc1 Lc3 \chic2 (-(-3 i + \sqrt{3}) \chic1^{2} + 2\sqrt{3} \chic2^{2} - (3 i + \sqrt{3}) \chic3^{2}) + \\ Lc2 (Lc1 \chic3 (-(3 i + \sqrt{3}) \chic1^{2} - (-3 i + \sqrt{3}) \chic2^{2} - (-3 i + \sqrt{3}) \chic3^{2}) + \\ Lc3 \chic1 (2 \sqrt{3} \chic1^{2} - (3 i + \sqrt{3}) \chic2^{2} - (-3 i + \sqrt{3}) \chic3^{2}) \right\} \right\},$$

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.
- reduce set covariants to a smaller set of independent covariants
- calculate flavon potentials

In[200]:= MBgetFlavonPotential[Group, 
$$\chi$$
,  $4$ ,  $\lambda$ ]  
2  
3  
4  
Out[200]=  $\lambda 3n1 \chi c1 \chi c2 \chi c3 + \frac{\lambda 2n1 (\chi c1^2 + \chi c2^2 + \chi c3^2)}{\sqrt{3}} + \lambda 4n1 (\chi c1^4 + \chi c2^4 + \chi c3^4) + \frac{1}{3} \lambda 4n2 (\chi c2^2 \chi c3^2 + \chi c1^2 (\chi c2^2 + \chi c3^2))$ 

We have developed a Mathematica Package that can be used to facilitate model building using discrete groups. It has the features:

- has access to groups catalogue of GAP, which contains all groups one would ever want to use
- calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed out of product of any representation etc.
- reduce set covariants to a smaller set of independent covariants
- calculate flavon potentials
- available at http://projects.hepforge.org/discrete/

Group Extensions may be used to solve the vacuum alignment problem in flavour models

- Group Extensions may be used to solve the vacuum alignment problem in flavour models
- We have identified the minimal set of symmetries needed to extend the smallest flavour groups(A<sub>4</sub>,T',S<sub>4</sub>,...)

- Group Extensions may be used to solve the vacuum alignment problem in flavour models
- We have identified the minimal set of symmetries needed to extend the smallest flavour groups(A<sub>4</sub>,T',S<sub>4</sub>,...)
- We have presented a model based on  $Q_8 \rtimes A_4$ , the smallest extension of  $A_4$

- Group Extensions may be used to solve the vacuum alignment problem in flavour models
- We have identified the minimal set of symmetries needed to extend the smallest flavour groups(A<sub>4</sub>,T',S<sub>4</sub>,...)
- We have presented a model based on  $Q_8 \rtimes A_4$ , the smallest extension of  $A_4$ 
  - vacuum alignment natural

- Group Extensions may be used to solve the vacuum alignment problem in flavour models
- We have identified the minimal set of symmetries needed to extend the smallest flavour groups(A<sub>4</sub>,T',S<sub>4</sub>,...)
- We have presented a model based on  $Q_8 \rtimes A_4$ , the smallest extension of  $A_4$ 
  - vacuum alignment natural
- low symmetry-breaking scale possible/can build testable model at EW scale

- Group Extensions may be used to solve the vacuum alignment problem in flavour models
- We have identified the minimal set of symmetries needed to extend the smallest flavour groups(A<sub>4</sub>,T',S<sub>4</sub>,...)
- We have presented a model based on  $Q_8 \rtimes A_4$ , the smallest extension of  $A_4$ 
  - vacuum alignment natural
- low symmetry-breaking scale possible/can build testable model at EW scale

# Thank you for your attention!