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Lepton mixing from discrete groups

complete flavour group

residual symmetry of (me me+)  residual symmetry of mν

Gf

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, sin2 θ13 = 0

misaligned non-commuting symmetries 
lead to

[He, Keum, Volkas ‘06; 
Lam’07,‘08; 
Altarelli,Feruglio’05, 
Feruglio, 
Hagedorn,Toroop’11]

L → ρ(g)Le → ρ(ge)e ν → ρ(gν)

ρ(ge)
TMeM

†
eρ(ge)

∗ = MeM
†
e ρ(gν)

TMνρ(gν) = Mν

Ge=〈T�=Z3 Gν=〈S,U�=Z2xZ2 

Ω†
eρ(ge)Ωe = ρ(ge)diag

Ω†
νρ(gν)Ων = ρ(gν)diag

mixing matrix determined from 
symmetry up to interchanging of rows/

columns and diagonal phase matrixUPMNS = Ω†
eΩU =
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ρ(T ) =




0 1 0
0 0 1
1 0 0



 ρ(U) =




1 0 0
0 0 1
0 1 0



ρ(S) =




1 0 0
0 −1 0
0 0 −1





tri-bimaximal 
mixing(TBM)

(Z3 smallest choice, but can also be 
continuous)

(Z2xZ2 most general choice if mixing angles do 
not depend on masses & Majorana νs)

for impact of measurement sin2!13≈.
03, see talks by Feruglio,  parallel 
session tomorrow 

e.g. 
A4

∼= (Z2 × Z2)� Z3 =〈S,T�
S4

∼= (Z2 × Z2)� S3 =〈S,T,U�



An A4 Prototype model
• (A4,Z4) charge assignments: L∼ (3,i), ec∼ (11,-i), "c∼ (12,-i), #c∼ (13,-i) ,$∼(3,1), 

Φ∼(3,-1), %∼(1,-1)

• auxiliary Z4 separates neutral and charged lepton sectors at LO

A4〈$�∼(1,1,1) 〈Φ�∼(1,0,0)

Z3=〈T� Z2=〈S�

TBM

Vacuum alignment crucial!

(symmetry U accidental)

[e.g. Ma,Rajasekaran’01, Babu, Ma, Valle ’03, 
Altarelli,Feruglio, ’05,’06]

ye(�χ)11
ec

+yµ(�χ)13
µc

+yτ (�χ)12
τ c

(LL)3φ+ (LL)11
ξ

ME ∼




ye yµ yτ
ye ωyµ ω2yτ
ye ω2yµ ωyτ



 Mν ∼




ã 0 0
0 ã d̃
0 d̃ ã







Can Vacuum Alignment be realised?
Vχ = m2

0 (χχ)11
+ λ1 (χχ)11

(χχ)11
+ λ2 (χχ)12

(χχ)13

〈$�∼(1,0,0)

λ1

〈$�∼(1,1,1)

λ2

vacuum unstable
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Vsoft,Z2 = m2
Aχ

2
1 +m2

Bχ
2
2 +m2

Cχ2χ3

Effect of breaking to Z2 in another sector can be included by adding:

Minimization conditions then give:

This thus requires mA= mB= mC=0, 
i.e. all non-trivial contractions 
between Φ and $ have to vanish in 
the potential.
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Can Vacuum Alignment be realized?

even if one sets the couplings to zero, they will be generated at one-loop level 

Vmix(χ,φ) = κ31
(φφ)31

(χχ)31
+

�
κ12

(φφ)12
(χχ)13

+ h.c.
�
+ ρ31

φ(χχ)31

To get the correct vacuum alignment, one thus needs to fine-tune the couplings

χ

χ

φ

φ

χ

χ

κ1λ2

κ1(φφ)11
(χχ)11

flavour conserving

κ12
∼ 1

16π2
λ2κ1

one needs a symmetry to enforce V=VΦ(Φ)+V$($)+(ΦΦ)1($$)1.
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no TBM no TBM

TBM
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for a natural model the realizes vacuum alignment, we need to have a finite portion 
of parameter space in which TBM vacuum is realized
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Solutions in the Literature
In models with extra dimensions(ED), it is possible to 

locate the various fields at different locations in the ED, 
thereby forbidding the cross-couplings.

Altarelli, Feruglio 2005
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Solutions in the Literature
In models with extra dimensions(ED), it is possible to 

locate the various fields at different locations in the ED, 
thereby forbidding the cross-couplings.

In SUSY, one has to introduce a continuous R-
symmetry and additional fields with R-charge 

2(driving fields). These fields enter the 
superpotential only linearly and allow the vacuum 

alignment.

Babu and Gabriel(2010) proposed the flavour group (S3)4⋊A4, which has the properties  
leptons transform only under A4 subgroup

if one takes Φ∼16, vacuum alignment possible as V=V(Φ)+V($)+(Φ Φ)1($$)1

neutrino masses then generated by coupling to〈Φ4�∼(1,0,0)

Altarelli, Feruglio 2005

Altarelli, Feruglio 2006



Group extensions and Vacuum alignment

• To solve the vacuum alignment problem, we extend the flavour group H [e.g. the successful 
groups H=A4,T7,S4,T′ or ∆(27)].

• we require the following:

• lepton structure should be same → irreps of H should be promoted to irreps of G, we 
therefore need a surjective homomorphism ξ : G → H such that
ρG ≡ ρH ◦ ξ, l∼3G, $∼3G  

• there should be an irrep Φ, the product Φn should contain a 3G

• renormalizable scalar potential should be of form: V=V(Φ)+V($)+(ΦΦ)1($$)1.

G〈$�∼(1,1,1) 〈Φn�∼(1,0,0)

Z3=〈T� Z2=〈S�

(l$)ec
(ll)3Φn+(ll)1Φn

TBM



Scan for Small Groups
• using the computer algebra system GAP and its SmallGroups catalogue, we have checked all 

groups with size smaller than 1000 (11,758,814 groups) and we have found a number of 
candidates:

Subgroup H Order of G GAP Structure Description Z(G)

A4

96 204 Q8 �A4 Z2

288 860 T
� �A4 Z2

384 617, 20123 ((Z2 ×Q8)� Z2)�A4 Z2

576 8273 (Z2.S4)�A4 Z2

768
1083945 (Z4.Z

2
4 )�A4 Z4

1085279 ((Z2 ×Q16)� Z2)�A4 Z2

S4

192 1494 Q8 � S4 Z2

384
18133, 20092 (Z2 ×Q8)� S4 Z2

20096 ((Z4 × Z2)� Z2)� S4 Z4

576
8282 T

� � S4 Z2

8480 (Z3 ×Q8)� S4 Z6

768 1086052, 1086053 ((Z2 ×Q8)� Z2)� S4 Z2

960 11114 (Z5 ×Q8)� S4 Z10

T
�

192 1022 Q8 � T
�

Z
2
2

648 533 ∆(27)� T
�

Z3

768 1083573, 1085187 ((Z2 ×Q8)� Z2)� T
�

Z
2
2

Table 2: Candidate groups G up to order 1000 that may be written as non-trivial semidirect

products G = N �H for the groups H = A4, T7, S4, T �, ∆(27) and that lead to an enhanced

symmetry in the scalar potential making the correct vacuum alignment possible. No such

groups were found for H = T7, ∆(27). Details of the groups may be accessed using the

computer algebra system GAP by using the command SmallGroup(Order,GAP). Q8 denotes

the quaternion group, which is defined in sec. 4 and the generalized quaternion group of order

16, Q16, is defined by Q16 =
�
x, y|x8 = 1, x2 = y

4
, y

−1
xy = y

−1
�
. The expression of the form

N.H is the GAP notation of a central extension, i.e. N is a normal subgroup of G, which is

contained in the centre of G, and H is the quotient group G/N ∼= H. Note that there can be

more than one semidirect product of N by H.

the scalar potential. This might be related to the fact that these groups have complex three-

dimensional representations, and there are more couplings that would have to be forbidden

by the additional symmetries than in the case of H = A4, T � and S4, which have real three

dimensional representations. Additionally, there are simply less groups up to order 1000,

which can be considered as an extension of T7 or ∆(27) compared to the other groups.

Looking at the list of candidate groups, we further note that the normal subgroup N

is non-abelian for all our candidate groups. In addition, the defining homomorphism 12 of

each semidirect product is injective for H = A4, S4
13 and in case of H = T

�, each group

N � T
� allows for a defining homomorphism with image A4 or T �. The quaternion group Q8,

which frequently appears in Tab. 2, is the smallest non-abelian group allowing for a defining

12Equivalently to the previous definition, a semidirect product N �H can be defined via a homomorphism

ϕ : H → Aut(N), where Aut(N) denotes the group of all automorphisms of N , i.e. the isomorphisms N → N .

The defining homomorphism is sometimes indicated as index of �, i.e. N �ϕ H.
13The same applies for the wreath product S4

3 �A4 introduced by Babu and Gabriel [21].

9

no candidates for T7 or Δ(27), 
maybe because here 3 is 
complex and there are more 
couplings that have to be 
forbidden (also smaller 
number of possible 
extensions)

all candidates in list have non-
trivial centre(=elements that 

commute with all other elements), not 
necessary true for all 
groups(see e.g. (S3)4⋊A4 studied in 
Babu/Gabriel 2010)

Groups of the Structure G ⋍N⋊H, H is subgroup of G defined by an 

homomorphism &:H→Aut(N) that defines the product (n1,h1)*(n2,h2)= (n1&h1(n2), h1 h2)



Scan for Small Groups
• using the computer algebra system GAP and its SmallGroups catalogue, we have checked all 

groups with size smaller than 1000 (11,758,814 groups) and we have found a number of 
candidates:

no candidates for T7 or Δ(27), 
maybe because here 3 is 
complex and there are more 
couplings that have to be 
forbidden (also smaller 
number of possible 
extensions)

all candidates in list have non-
trivial centre(=elements that 

commute with all other elements), not 
necessary true for all 
groups(see e.g. (S3)4⋊A4 studied in 
Babu/Gabriel 2010)

Quotient Group H Order of G GAP Structure Description

A4

96 201 Z2.(Z2
2 ×A4)

144 127 Z2.(A4 × S3)

192 1017 Z2.(D8 ×A4)

S4

96 67, 192 Z4.S4

144 121, 122 Z6.S4

192 187, 963 Z8.S4

192 987, 988 Z2.((Z2
2 ×A4)� Z2)

192 1483,1484 Z2.(Z2
2 × S4)

192 1492 Z2.((Z4
2 � Z3)� Z2)

T
� 192 1007 Z

2
2 .(Z

2
2 ×A4)

Table 3: Candidate groupsG up to order 200, which can not be written as semidirect product.

The expression of the form N.H in the last column is the GAP notation of a central extension,

i.e. N is a normal subgroup of G, which is contained in the centre of G, and H is the quotient

group G/N ∼= H. Here, we explicitly choose N = Z(G) and therefore N.H = Z(G).G/Z(G).

The candidate groups of order 200-500 can be found in Tab. 8.

Hence, as soon as there is a surjective homomorphism ξ : G → H, there are representations

ρi with the desired property. Therefore, is it enough to look for groups G and a surjective

homomorphism ξ : G → H. This automatically implies the existence of a normal subgroup

N = ker ξ and a quotient group G/N ∼= H. Thus, we are only dropping the condition that

H is a subgroup of G. Actually, this type of extension is a general problem in group theory,

which aims to find all possible groups G given two groups N and H, such that G/N ∼= H. In

the mathematical literature, this is denoted by short exact sequence. One example of such an

extension is T
�. A4 is not a subgroup of T �, but A4

∼= T
�
/Z2. In T

� models [14], the flavour

structure of the lepton sector is essentially described by the quotient group T
�
/Z2

∼= A4

and the additional group structure, i.e. the two dimensional representations 2i, are used to

describe the quark sector. Hence, group extensions of the kind we described are not limited

to the VEV alignment, but can be used more generally to lift properties of one group H

to a larger group G, which addresses additional questions in flavour physics. Therefore, we

propose to use these kind of constructions more systematically.

In this article, however, we are mainly interested in a solution to the vacuum alignment

problem, and therefore, we do not consider these other possibilities further, but perform

another scan looking for groups solving the vacuum alignment problem and we relaxed the

first condition of the previous scan to

1. G/N ∼= H with H being one of the groups A4, T7, T � 18, S4, ∆(27),

while keeping the other conditions. It turns out that there are only candidates for A4, T � and

S4 up to order 1000. We collect all candidates up to order 200, which are not contained in

18We included T
� in this scan, although T

� is an extension of A4 via T
�
/Z2

∼= A4. However, the second

condition excludes several candidates for T
�, because the Z2 in T

�
/Z2

∼= A4 is a subgroup of the N in the

second condition.

11

Groups N.H for which H is not a subgroup of G, with G/N⋍H, 
as this is enough to ensure the existence of the relevant representations(e.g. 
T‘/Z2=A4). 



Smallest Group
The smallest candidate group that contains A4 as a subgroup is the 
semidirect product of the quaternion group Q8

�
X,Y |X4 = 1, X2 = Y 2, Y −1XY = X−1

�

with A4 �
S, T |S2 = T 3 = (ST )3 = 1

�

defined by the additional relations 

SXS−1 = X, SY S−1 = Y −1, TXT−1 = Y X, TY T−1 = X .

Representations: 1 T SY X SY Y 2 T 2 TY S SX X STY T

11 1 1 1 1 1 1 1 1 1 1 1
12 1 ω 1 1 1 ω2 ω 1 1 1 ω2

13 1 ω2 1 1 1 ω ω2 1 1 1 ω
31 3 . -1 -1 3 . . -1 -1 3 .
32 3 . 3 -1 3 . . -1 -1 -1 .
33 3 . -1 3 3 . . -1 -1 -1 .
34 3 . -1 -1 3 . . 3 -1 -1 .
35 3 . -1 -1 3 . . -1 3 -1 .
41 4 1 . . -4 1 -1 . . . -1
42 4 ω2 . . -4 ω -ω2 . . . -ω
43 4 ω . . -4 ω2 -ω . . . -ω2

unfaithful A4 reps for 
leptons, $

faithful rep for Φ

X2

1

X

X3

YX3 YX2

Y YX



Smallest Group
The smallest candidate group that contains A4 as a subgroup is the 
semidirect product of the quaternion group Q8

�
X,Y |X4 = 1, X2 = Y 2, Y −1XY = X−1

�

with A4 �
S, T |S2 = T 3 = (ST )3 = 1

�

defined by the additional relations 

SXS−1 = X, SY S−1 = Y −1, TXT−1 = Y X, TY T−1 = X .

Representations:

X2

1

X

X3

YX3 YX2

Y YX

A4 reps

3i × 3i = 11 + 12 + 13 + 3iS + 3iA

3i × 3j =
5�

k=1
k �=i,j

3k (i �= j)

3i × 4j = 41 + 42 + 43

41 × 41 = 11S + 31A + 32S + 33S + 34S + 35A

41 × 42 = 12S + 31A + 32S + 33S + 34S + 35A

S T X Y

11 1 1 1 1

12 1 ω 1 1

13 1 ω2 1 1

31




1 0 0
0 −1 0
0 0 −1








0 1 0
0 0 1
1 0 0








1 0 0
0 1 0
0 0 1








1 0 0
0 1 0
0 0 1





41





0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0









0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



Φ

faithful representation Φ is what we 
were looking for.

(Φ Φ) only contains non-trivial 
contraction of the A4 subgroup.



The model
particle SU(3)c SU(2)L U(1)Y Q8 �A4 Z4

� 1 2 -1/2 31 i
e
c + µ

c + τ
c 1 1 1 11 + 12 + 13 −i

H 1 2 1/2 11 1

χ 1 1 0 31 1

φ1 1 1 0 41 1
φ2 1 1 0 41 −1
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� = 1
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(ac+ bd)



The model
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� 1 2 -1/2 31 i
e
c + µ

c + τ
c 1 1 1 11 + 12 + 13 −i

H 1 2 1/2 11 1

χ 1 1 0 31 1

φ1 1 1 0 41 1
φ2 1 1 0 41 −1

L(5)
e = ye(�χ)11

e
c
H̃/Λ+ yµ(�χ)13

µ
c
H̃/Λ+ yτ (�χ)12

τ
c
H̃/Λ+ h.c. ,

LO charged lepton masses:

�χ� = (v�, v�, v�)T ,

�φ1� =
1√
2
(a, a, b,−b)T ,

�φ2� =
1√
2
(c, c, d,−d)T

VEVs:

�(φ1φ2)31
� = 1

2
(bc− ad, 0, 0)T

�(φ1φ2)11
� = 1

2
(ac+ bd)

ME ∼




ye yµ yτ
ye ωyµ ω2yτ
ye ω2yµ ωyτ







The model
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H 1 2 1/2 11 1
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e
c
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µ
c
H̃/Λ+ yτ (�χ)12

τ
c
H̃/Λ+ h.c. ,

L(7)
ν = xa(�H�H)11

(φ1φ2)11
/Λ3 + xd(�H�H)31

· (φ1φ2)31
/Λ3 + h.c. .

LO charged lepton masses:

LO neutral lepton masses:

�χ� = (v�, v�, v�)T ,

�φ1� =
1√
2
(a, a, b,−b)T ,

�φ2� =
1√
2
(c, c, d,−d)T

VEVs:

�(φ1φ2)31
� = 1

2
(bc− ad, 0, 0)T

�(φ1φ2)11
� = 1

2
(ac+ bd)

TBM (symmetry U accidental)

ME ∼




ye yµ yτ
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ye ω2yµ ωyτ



 Mν ∼




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The model
particle SU(3)c SU(2)L U(1)Y Q8 �A4 Z4

� 1 2 -1/2 31 i
e
c + µ

c + τ
c 1 1 1 11 + 12 + 13 −i

H 1 2 1/2 11 1

χ 1 1 0 31 1

φ1 1 1 0 41 1
φ2 1 1 0 41 −1

L(5)
e = ye(�χ)11

e
c
H̃/Λ+ yµ(�χ)13

µ
c
H̃/Λ+ yτ (�χ)12

τ
c
H̃/Λ+ h.c. ,

L(7)
ν = xa(�H�H)11

(φ1φ2)11
/Λ3 + xd(�H�H)31

· (φ1φ2)31
/Λ3 + h.c. .

LO charged lepton masses:

LO neutral lepton masses:

�χ� = (v�, v�, v�)T ,

�φ1� =
1√
2
(a, a, b,−b)T ,

�φ2� =
1√
2
(c, c, d,−d)T

VEVs:

�(φ1φ2)31
� = 1

2
(bc− ad, 0, 0)T

�(φ1φ2)11
� = 1

2
(ac+ bd)

additional 41 necessary to get correct symmetry breaking (otherwise only breaking to A4)

same # of d.o.f. as in case of complex triplet and singlet, no additional driving fields 
necessary

low flavour symmetry breaking scale possible, testable



Scalar Potential & Vacuum Alignment

Vφ(φ1,φ2) =µ2
1(φ1φ1)11

+ α1(φ1φ1)
2
11

+
�

i=2,3

αi(φ1φ1)3i
· (φ1φ1)3i

+µ2
2(φ2φ2)11

+ β1(φ2φ2)
2
11

+
�

i=2,3

βi(φ2φ2)3i
· (φ2φ2)3i

+γ1(φ1φ1)11
(φ2φ2)11

+
�

i=2,3,4

γi(φ1φ1)3i
· (φ2φ2)3i

Vχ(χ) = µ2
3(χχ)11

+ ρ1(χχχ)11
+ λ1(χχ)

2
11

+ λ2(χχ)12
(χχ)13

Vmix(χ,φ1,φ2) = ζ13(φ1φ1)11
(χχ)11

+ ζ23(φ2φ2)11
(χχ)11

The most general scalar potential invariant under the flavour symmetry is given by
V (χ,φ1,φ2) = Vχ(χ) + Vφ(φ1,φ2) + Vmix(χ,φ1,φ2)

with

[(Q8 �A4)×A4]× Z4Potential has an accidental symmetry 

invariant under independent transformations of Φ and $

note that couplings such as                      are forbidden by the auxiliary Z4 symmetry that 
separates the charged and neutral lepton sectors

χ · (φ1φ2)31



Scalar Potential & Vacuum Alignment
Minimum Conditions

a
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4
√
3λ1v

�2 + 3ρ1v
� + 2µ2

3 + ζ13(a
2 + b2) + ζ23(c

2 + d2)
�
= 0

with 

eleven minimization conditions reduce to 
these 5 equations for 5 VEVs there is 
therefore generally a solution

we have performed a numerical study to 
show that there is finite region of parameter 
space where the desired vacuum 
configuration is the global minimum

ξ+ = ξ1
2 , ξ− = ξ2+ξ3

2
√
3

for ξ = α,β

γ+ =
√
3γ1+γ4

4
√
3

, γ− = γ2+γ3

4
√
3

and Γ = γ4√
3

〈$�∼(1,1,1)

λj

〈$�∼(1,1,1)

λi

〈Φ1Φ2�∼(1,1,1)〈Φ1Φ2�∼(1,0,0)

TBM no TBM

〈$�∼(1,0,0)

〈Φ1Φ2�∼(1,0,0)

no TBM

〈$�∼(1,0,0)

〈Φ1Φ2�∼(1,1,1)

no TBM



Higher Order Corrections

NLO Corrections to vacuum potential

V (5) =
2�

L,M=1

4�

i,j=2

δ(LM)
ij

Λ
χ ·

�
(φLφL)3i

· (φMφM )3j

�

31

+

+
χ3

Λ

�
δ(3)1 χ2 + δ(3)2 (φ1φ1)11

+ δ(3)3 (φ2φ2)11

�

leads to shifts in VEVs

�χ� = (v� + δv�1, v
� + δv�2, v

� + δv�2)
T ,

�φ1� =
1√
2
(a+ δa1, a+ δa2, b+ δa3,−b+ δa4)

T ,

�φ2� =
1√
2
(c+ δb1, c+ δb2, d+ δb3,−d+ δb4)

T
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ij = 0 for i ≥ j
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generic size of shifts

generic size of shifts for scalar potential 
parameters of order oneVEV alignment not destroyed!



Higher Order Corrections

[Lin’10, Shimizu,Tanimoto, Watanabe‘11,Luhn,King’11]

sin2!13≈.03 can be accommodated at NLO

or by introducing additional non-trivial singlet field ξ ∼ (12,i) giving trimaximal 
mixing[does not destroy VEV alignment]



Flavour Breaking at the Electroweak Scale
• mechanism allows for low scale flavour breaking, 

testability of alignment sector

• Change model such that $ is an EW doublet, Φs 
singlet, add messenger fields to make it 
renormalizable

• neutrino masses are generated at one-loop level

[MH, M. Lindner, M. Schmidt, in preparation]

fermion SU(2)L U(1)Y Q8 �A4 Z4

S 1 0 32 −1

scalars SU(2)L U(1)Y Q8 �A4 Z4

η1 2 1/2 35 i
η2 2 1/2 34 i
η3 2 1/2 35 −i

να νβ
ηi ηj

η3

S S

�χ�
�χ� �φ1�

�φ2�

Figure 1: Neutrino mass generation at one loop.

1 Introduction

We aim to implement the model in [1] at the electroweak scale. We first present an effective

description and then construct a radiative neutrino mass model. To this end, we replace the

electroweak singlets introduced in [1] with electroweak doublets.

2 Model

We utilize the symmetryQ8�A4 proposed in [1], which allows for a natural vacuum alignment,

and implement a model describing the lepton sector at the electroweak scale. Hence, we

promote the flavon fields of [1] that couple to the charged lepton sector to EW Higgs doublets.

Hence, the charged lepton sector is described by

− Le = yeLχ̃e
c + yµLχ̃µ

c + yτLχ̃τ
c + h.c. , (1)

where the contractions are uniquely defined by the particle content. The mass matrix is thus

given by

ME =
v�
√
2
Ω∗
Tdiag(ye, yµ, yτ ) (2)

with ΩT defined in 38. Neutrino masses are generated at one loop, as it is shown in Fig. 1.

The particle content of the lepton sector is given in Tab. 1. The vacuum configuration

�χi� =

�
0
v√
2

�
�φ1� =

1
√
2
(a, a, b,−b)T , �φ2� =

1
√
2
(c, c, d,−d)T (3)

can be naturally obtained from the most general scalar potential, as is reviewed in B.1.

3 Neutrino masses

Neutrino masses are generated at one-loop level. The couplings of S are given by

Lν = h1Lη1S + h2Lη2S +
√
3MSSS + h.c. . (4)

2

Vη,χ =λ1(χ
tτ2�τχ)11

(ηt1τ2�τη3)
∗
11

+ λ2e
iαλ(χtτ2�τχ)31

(ηt2τ2�τη3)
∗
31

+ h.c.

Vη,φ =λ3(φ1φ2)11
(η†3η1)11

+ λ4(φ1φ2)31
(η†3η2)31

+ h.c.

Lν = h1Lη1S + h2Lη2S +
√
3MSSS + h.c. .

where k2 −M2

0
is diagonal, and treat the mixing between the different components of ηi by

mass insertions δM2. The evaluation of the one loop diagram leads to

mν =




â ê eiαλ ê eiαλ

. â+ b̂ eiαλ d̂+ ê eiαλ

. . â



 , (9)

where the four real coefficients are given by
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Πk �=i (mi
2 −mk

2)
. (11)

Although there are four complex parameters, we can express them in terms of four real

parameters and three phases, where on phase is an unphysical overall phase γ, such that the

neutrino mass matrix can be written

mν = eiγ




ã ẽ eiβ ẽ eiβ

. ã+ b̃ ei(α+β) d̃ eiα + ẽ eiβ

. . ã



 , (12)

with the parameters

ã = |â| d̃ = |d̂| b̃ = |b̂| ẽ = |ê| (13)

α = arg
�
d̂/â

�
β = arg (ê/â) γ = arg (â) (14)

In the following, we are neglecting the unphysical phase γ, which can be removed by rephasing

the fields. As the neutrino mass matrix is described by six physical real parameters, there are

three predictions at leading order. They can be easily read off from the Eq. (12) in terms of

matrix elements, but the expression in terms of mixing parameters is non-trivial. In flavour

basis, where the charged lepton mass matrix is diagonal, the neutrino mass matrix is given

by
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ã− ẽ eiβ + 1

3
eiα

�
−d̃+ b̃eiβ

�

. . 1

3
eiα

�
2d̃+ b̃eiβω

�




.

(15)

4
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is diagonal, and treat the mixing between the different components of ηi by
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. . â
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• flavour structure

• TBM for λ2=0, 
non-zero !13 can 
be generated

where k2 −M2

0
is diagonal, and treat the mixing between the different components of ηi by

mass insertions δM2. The evaluation of the one loop diagram leads to
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• neutrino masses small mν ∼ 1

16π2
h2

�
δM2

η

M2
η

�2
M2

η

MS
∼ 1 eV for h ∼

δM2
η

M2
η

∼ 10−2,Mη ∼ 100GeV,MS ∼ 1TeV



Flavour Breaking at the EW Scale-Mixing
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where k2 −M2

0
is diagonal, and treat the mixing between the different components of ηi by

mass insertions δM2. The evaluation of the one loop diagram leads to
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�
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• TBM for b=e=0

• e induces 13 rotation UPMNS =UTMBU13 

•  b induces 12 rotation UPMNS =UTMBU12

• sin2!13≈.03 needs e/a≈.1



Flavour Breaking at the EW Scale-Dark Matter

• model has a dark matter candiate as there is an accidental symmetry

at the renormalizable level, and a remnant symmetry of the Z4 part of the flavour 
symmetry

decay is mediated by operators                              , where OSM must be an EW doublet 
and Lorentz singlet. The insertion of at least two Φs is needed to form a flavour singlet. 
The lowest dimensional operators are given by:

[MH, M. Lindner, M. Schmidt, in preparation]

ηi → −ηi S → −S

A : L → −L ec → −ec ηi → −ηi

ηiO
A=−1
SM �Oφkφl�

• the low mass region is problematic in IDM, but one might speculate that coannihilations

could play a bigger role in our model as mass splittings between the multiplets tend to

be small Difficult, because the charged component of the doublet should have a similar

mass.

Fermionic DM:

4.2 Stability

We want to emphasize again that our DM candidates are stable within our model and no DM

decay operators are induced by the given particle content. However, we want to estimate the

possible scales of new physics, which could introduce DM decay. Similarly to the previous

section, we are going to discuss the two different possibilities separately.

Scalar DM: Any effective operator that would mediate a decay of the lightest ηi has to

be of the form

ηiO
∆L=1

SM �Oφkφl
� (23)

Here, O∆L=1

SM
denote operators build out of SM fields (as well as Hi and χ), which violates

lepton number by one unit and transforms as an electroweak doublet. The lowest dimensional

operators in the SM arise at dimension six (See [2] for a recent review of gauge invariant

dimension 6 operators. )

Lucdcdc L̄d̄cd̄cd̄c LQ̄Q̄dc ēcQ̄dcdc (24a)

χ†LQQQ χ†ecucucdc χ†L̄Q̄ucdc χ†ēcQQūc χ†LQūcd̄c . (24b)

All dimension 6 operators in Eq. (24a) break baryon number by one unit, B−L by two units

and preserve B+L. The dimension 7 operators in Eq. (24b) on the other hand break baryon

number by one unit, preserve B − L and break B + L by two units. They are formed by

adjoining a Higgs H or χ to a dimension 6 proton decay operator. The second operator Oφkφl

is composed of an even number of flavons φk. It is required to form a singlet under the flavour

symmetry, because the representations of the A4 subgroup, which the SM fields transform

under, do not directly couple to ηi ∼ 34,5.

Decaying DM models are constrained by WMAP to Γ−1 ≥ 123Gyr at 68% C.L. [3] and

WMAP+SN Ia to Γ−1 ≥ 700Gyr at 95.5% C.L. [4]. Furthermore, decaying DM is constrained

by possible neutrino final states [5], which serve as a conservative limit, since neutrinos are the

least detectable SM particles. The exact bound depends on the DM mass ranging from 1022s

at O(1GeV) and increasing almost linearly on a log-log plot to 1028s at O(100TeV). Diffuse

gamma ray constraints from Fermi data yield a limit of Γ−1 � 1026s [6] for the decay in a

pair of charged leptons. Wir haben ein lepton und der bound kommt sicher vom Antiteilchen.

Ist er doch schwächer in unserem Fall? Hence, we can estimate the suppression scale of the

lowest order DM decay operator in Eq. (23). Under the assumption that the flavour part of

the operator is related to the breaking of the flavour symmetry ΛF , a DM decay operator

7

B+L=0

B-L=0

• the lifetime induced by the dim. 6 SM operators                       is given by 

• the bound of                       translates into

• DM abundance produced in same way as normal Inert Dark Matter 

• the fermionic DM candidate S is stabilized in an analogous way, if it is the lightest 

ηiO
A=−1
SM

Λ3
B

�φkφl�

Λ2
F

Γ−1 ∼ 8πΛ6
B

m7
η

�
Λ2
F

�φkφl�

�2

Γ−1 � 1026s
�
Λ3
BΛ

2
F

�1/5 � 6 · 107GeV
� mη

1TeV

�7/10
�

�φkφl�
(100GeV)2

�1/5

.



Flavour Breaking at the EW Scale-LFV&Higgs
• in models with radiative neutrino mass, 

lepton flavour violating processes put 
constraints

µ
S

η

e

η

γ

µ
S
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on the exact bound on the lifetime. Therefore, we again do a very crude estimate of the

bound on the suppression scale by using the same lifetime as in the scalar case and we obtain
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due to the lower dimensionality of the DM decay operator.

5 Phenomenology

5.1 Lepton Flavour Violation

In models with radiative neutrino mass generation, generally the particles in the loop can

also mediate flavour changing processes, in particular lepton flavour violating decays. We

will here focus on the experimentally most well studied process, namely the process µ → eγ.

As in the calculation of neutrino masses, we will use the approximation that the the flavour

violating contributions to the masses are small, such that its effects can be treated by mass

insertions along the scalar lines.

The leading contribution to µ → eγ is given by a diagram, which is depicted in Figure 2a

and which is similar to the neutrino mass diagram 1 of the last section. Without any mass

insertion, the diagram evaluates to

Br(µ → eγ) =
3α

64π(GFm2

0
)2
C4 (32)

where

C2 =
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and F2(t) =

1− 6t+ 3t2 + 2t3 − 6t2 ln t

6(1− t)4
.

where t = MS/M0. In our model, we have C2 = 0 and there have to be mass insertions

to generate flavour violating interactions. Note that this is quite a welcome feature as LFV
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processes of this type severely constrain models that generate neutrino masses radiatively

[]. This can be seen as the experimental constraint Br(µ → eγ) < 1.2 · 10−11 requires

C4 ∼ 1.5 · 10−8 for MS = M0 = 100GeV.

The fact that the flavour symmetry protects one from flavour violating processes can be

easily understood using a spurion analysis: The µ → eγ type diagram is described by an

operator of the form

LσµνF
µνecH̃/M2

∼ (31, 1)

which transforms in the same way as the mass term under flavour symmetry. To form a

singlet, one therefore has to add at least one flavon field. Let us discuss them in turn:

• χ gives the same structure as the mass term and is thus diagonal even if there are

additional contributions from vev shifts

• �χn� gives the same structure as long as there are no vev shifts, one therefore has to

couple to the flavons in the neutrino sector, this suppresses the rate

• the lowest dimensional operators that introduce off-diagonal entries are given by φ4

1,2

and (φ1φ2)2. As φ1 and φ2 do not break the subgroup generated by S, the vevs of all

contractions is in the (1, 0, 0) directions.

From this considerations we see that the lowest order contribution to µ → eγ (the same is

true for processes such as τ → µγ) is given by a diagram with two mass insertions. We find

Br(µ → eγ) =
α

16π(GFm2

0
)2
C̃4 (33)

where

C̃2 =
1

M4

������

�

i,J,K,L

hµiJδM
2

JKδM2

KLh
∗
eiLF4(MS ,MJ ,MK ,ML)

������

and F4 is a dimensionless loop integral, which we only give in the limit of degenerate η masses

G2(t) = F4(MS = tM,MJ = M,MK = M,ML = M)

=
1− 12t2 − 36t4 + 44t6 + 3t8 − 24(2t2 + 3)t4 ln t

48(t2 − 1)12
. (34)

The dimensionless functions F2 and G2 are plotted in Figure 3. In the same limit of degenerate

masses, we have

C̃2 =
1

M4

1

72
h2λ4Φ3

�
−2h1λ3Φ1 +

1

2
ω2h2λ4Φ3

�
(35)

with Φ1 = ac + bd and Φ3 = bc − ad. Comparing the expressions for the neutrino masses

with we see that C̃2 ∼ mν/mS ∼ 10−13 can be naturally expected and there is thus a large

suppression. Note that the relation C̃2 ∼ mν/mS is not really necessary as e.g. h2λ4Φ3 could

be of order M , but if we assume these terms to be of order 10−2M we have an appealing

explanation of both the smallness of neutrino masses and the smallness of LFVs.
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• needs additional mass insertions, natural suppression 

• LFVs mediated by 4 fermi interactions loop 
suppressed & selection rule ∆Le∆Lμ∆Lτ =!±2

C4 ∼
�
δM2

η

M2
η

�4

∼ 10−8



Flavour Breaking at the EW Scale-LFV&Higgs
• in the charged lepton sector, the VEV (1,1,1) leaves the Z3 subgroup generated by T 

invariant

• go to a basis where T is diagonal

ρ(T ) =




0 1 0
0 0 1
1 0 0





ΩT ≡ 1√
3




1 1 1
1 ω2 ω
1 ω ω2



Ω†
eρ(T )Ωe = diag(1,ω2ω)

(Le, Lµ, Lτ )
T = ΩTL ∼ (1,ω2,ω)T (ec, µc, τ c)T ∼ (1,ω,ω2)T

• only phi gets a VEV and plays the role of the SM Higgs 

• the other two Higgs fields are inert and have flavour off-diagonal couplings

(ϕ,ϕ�,ϕ��)T = ΩTχ ∼ (1,ω2,ω)T

ϕ̃ (yeLee
c + yµLµµ

c + yτLτ τ
c)

ϕ̃� (yeLτe
c + yµLeµ

c + yτLµτ
c) ϕ̃�� (yeLµe

c + yµLτµ
c + yτLeτ

c)

• this generates LFV 4f operators ( with the selection 
rule ∆Le∆Lμ∆Lτ =!±2) 

• the most constraining process is 
ϕ�

τ e

µ

e

Br(τ− → µ+e−e+) ∼ 10−7

�
2GeV

M4
ϕ�,ϕ��

�

• Higgs admixture of φ, Φ singlets, in the limit H= φ
tree-level branching ratios same as SM, loop-processes altered

• in the quark sector, no mixing at LO, Cabibbo angle has to be generated by cross-talk to neutrino sector flavons
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We have developed a Mathematica Package that can be used to facilitate model building using 

discrete groups. It has the features:

has access to groups catalogue of GAP, which contains all groups one would 
ever want to use

calculate Kronecker products, Clebsch-Gordon coefficients, covariants formed 
out of product of any representation etc.

reduce set covariants to a smaller set of independent covariants 

calculate flavon potentials

available at http://projects.hepforge.org/discrete/
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Thank you for your 
attention!


