Electroweak and Sommerfeld corrections

to the Wino dark matter annihilation

Andrzej Hryczuk

SISSA

30 May 2012

Based on:

- AH, Roberto Iengo; JHEP 1201 (2012) 163 [arXiv:1111.2916]
- work in progress with Ilias Cholis, Maryam Tavakoli and Piero Ullio
- AH, Roberto Iengo, Piero Ullio; JHEP 1103 (2011) 069 [arXiv:1010.2172]

Introduction

Strong evidence for particle dark matter, with

 $\Omega_{\rm obs}h^2 = 0.1123 \pm 0.0035$

obtained within Λ CDM model from WMAP7 + BAO + h

Thermal relic density of dark matter particles:

$$\Omega h^2 \approx 0.1 \left(\frac{3 \cdot 10^{-26} cm^3 s^{-1}}{\langle \sigma_A \mathbf{v} \rangle_{T_{\rm f.o.}}} \right)$$

 $\langle \sigma_A \mathbf{v} \rangle_{T_{f.o.}}$ annihilation cross section at the about freeze-out temperature

Dark matter annihilation

Indirect detection depends on the annihilation cross section, but for low velocity WIMPs in DM halos

flux ~ $n^2 \langle \sigma_A \mathbf{v} \rangle_{\text{DM halo}}$,

i.e. essentially in $v \rightarrow 0$ limit

Dark matter annihilation

Indirect detection depends on the annihilation cross section, but for low velocity WIMPs in DM halos

flux ~ $n^2 \langle \sigma_A \mathbf{v} \rangle_{\text{DM halo}}$,

i.e. essentially in $v \rightarrow 0$ limit

After the annihilation, the final states decay and/or fragmentate and produce showers of softer stable states γ , e^+ , \bar{p} , ν , \bar{d}

 \rightarrow those propagate down to Earth

Electroweak corrections

Tree level annihilation +

Monte Carlo shower/hadronization/fragmentation code (e.g. PYTHIA)

Electroweak corrections

One-loop level annihilation

+

Monte Carlo shower/hadronization/fragmentation code (e.g. PYTHIA)

- corrections (large in some cases) to the $\langle \sigma \mathbf{v} \rangle$
- softer SM particles spectra at DM annihilation
- all stable SM particles in the final spectrum, even if not present in the annihilation channel
- additional new spectral features: bumps and sharp cutoffs

- corrections (large in some cases) to the $\langle \sigma \mathbf{v} \rangle$
- softer SM particles spectra at DM annihilation
- all stable SM particles in the final spectrum, even if not present in the annihilation channel
- additional new spectral features: bumps and sharp cutoffs

Rich literature in recent years about this topic:

Boudjema, Kechelriess, Serpico, Ciafaloni, Ciafaloni, Comelli, Urbano, de Simone, Strumia, Cirelli, Bergstrom, Bringmann, Eriksson, Gustafsson, Dent, Weiler, ...

- corrections (large in some cases) to the $\langle \sigma v \rangle$
- softer SM particles spectra at DM annihilation
- all stable SM particles in the final spectrum, even if not present in the annihilation channel
- additional new spectral features: bumps and sharp cutoffs

Rich literature in recent years about this topic:

Boudjema, Kechelriess, Serpico, Ciafaloni, Ciafaloni, Comelli, Urbano, de Simone, Strumia, Cirelli, Bergstrom, Bringmann, Eriksson, Gustafsson, Dent, Weiler, ...

- corrections (large in some cases) to the $\langle \sigma \mathbf{v} \rangle$
- softer SM particles spectra at DM annihilation
- all stable SM particles in the final spectrum, even if not present in the annihilation channel
- additional new spectral features: bumps and sharp cutoffs

- corrections (large in some cases) to the $\langle \sigma \mathbf{v} \rangle$
- softer SM particles spectra at DM annihilation
- all stable SM particles in the final spectrum, even if not present in the annihilation channel
- additional new spectral features: bumps and sharp cutoffs

Rich literature in recent years about this topic: Boudjema, Kechelriess, Serpico, Ciafaloni, Ciafaloni, Comelli, Urbano, de Simona Strumia, Cirelli, Bergstrom, Bringmann, Eriksson, Gustafsson, Dent, Weiler,

Conclusions

Wino dark matter

In the MSSM the neutralino is a combination of gauginos (\tilde{B}, \tilde{W}^3) and higgsinos $(\tilde{h}_1^0, \tilde{h}_2^0)$:

$$\tilde{\chi}_{i}^{0} = N_{i1}\tilde{B} + N_{i2}\tilde{W}^{3} + N_{i3}\tilde{h}_{1}^{0} + N_{i4}\tilde{h}_{2}^{0}$$

If $N_{i2} \gg N_{i1}, N_{i3}, N_{i4}$ then neutralino is Wino-like and

• is nearly degenerated in mass with the lightest chargino

$$m_{\chi^{\pm}} - m_{\chi^0} pprox 170 \text{ MeV}$$

- is in an adjoint of SU(2)
- if m_{χ⁰} > m_W has very efficient annihilation channel into W⁺W[−] ⇒ typically too small thermal relic density, at tree level:

$$\Omega_{\rm DM} h^2 pprox 0.11 \Rightarrow m_{\chi^0} pprox 2.2 \,{
m TeV}$$

... but then, large corrections!

Why corrections are large?

Typically, one expects that EW one-loop corrections are at most a few %. At TeV scale, however, soft/collinear Bremsstrahlung gauge bosons are enhanced by large (Sudakov) logarithms:

$$lpha_2\lograc{m^2}{m_W^2}, \quad lpha_2\left(\lograc{m^2}{m_W^2}
ight)^2$$

 $m = 1 \text{ TeV}, \alpha_2 \approx \frac{1}{30} \Rightarrow \approx 0.17 \approx 0.86$

When $m \gg m_W$ this resembles IR divergence of QED or QCD \rightarrow Bloch-Nordsieck violation [Ciafaloni, Ciafaloni, Comelli, '00]

Bloch-Nordsieck: in QED the inclusive cross-section IR Logs cancel Kinoshita-Lee-Nauenberg: generalized to SM, but only when summed over initial non-abelian charge

Sommerfeld enhancement

Sommerfeld enhancement (effect) is a non-relativistic effect changing the cross section due to the wave function distorsion by a long range potential.

Conditions for significant enhancement:

• slow incoming particles

long range force

force range

Bohr radious

Sommerfeld effect in the MSSM

In the MSSM:

- Dark matter \rightarrow lightest neutralino χ_1^0
- possible intermediate bosons:

$$\gamma$$
, W^{\pm} , Z^0 , h_1^0 , \underline{h}_2^0 , H^+

It would seem that to have a large effect

$$\frac{1}{m_W} \gtrsim \frac{1}{\alpha m_\chi} \qquad \Rightarrow \qquad m_\chi \gtrsim 2.3 \text{ TeV}$$

Moreover, if $\delta m = m_{\chi^+} - m_{\chi}$ is too large then the effect is suppressed

Sommerfeld effect in the MSSM

... but

• as soon as one can produce nearly on-shell χ^+ , i.e. when $\mathcal{E} \approx 2\delta m$:

• for relic density also co-annihilations are important \rightarrow one needs to compute Sommerfeld effect also for incoming $\chi^+\chi^-$, $\chi^+\chi_1^0$, ...

Wino-like χ^0 has $\delta m \ll m_{\chi^0} \Rightarrow$ Sommerfeld effect has to be included

Sommerfeld enhancement without dark force

- \rightarrow for the pure wino or pure higgsino in MSSM [Hisano et al. '03, '05]
- \rightarrow for the Minimal Dark Matter model [Strumia et al. '07]

Effect not so big as in models with dark force, but still important and much less speculative!

[AH, R. Iengo, P. Ullio, '10]

DarkSE: a numerical package for DarkSUSY computing relic density with Sommerfeld effect for a general MSSM setup [AH, 1102.4295] g at what energy scale?

Most of the computations in DM literature are done at tree level \rightarrow clearly not enough for TeV scale

To take the radiative corrections into account one often take the value of g at the scale of DM mass m and simply use RGE with one- or two-loop β -function

This is not fully correct way to proceed:

[see also e.g. Guash et al. '02; Chatterjee et al. '11]

- RGE holds in deep Euclidean regime: when external lines are on-shell not only UV but also IR large Logs occur ⇒ threshold corrections
- RGE is appropriate when there is one single large scale μ²: in computation of the Sommerfeld effect, there are two: DM mass *m* and the momentum transfer O(m_W)

One-loop computations

Since χ^0 is:

Results

- a Majorana fermion
- non-relativistic, with essentially $v \rightarrow 0$
- in adjoint of *SU*(2) and neutral under *U*(1)

therefore:

- the only interaction is through vertex χ⁰χ[±]W[∓]
- the initial $\chi^0 \chi^0$ state is spin singlet

The radiative amplitude corrections can be written as:

 $A = A_{\rm tree} \left(1 + g^2/(4\pi)^2 C_i(m)\right)$

One-loop $\chi^+\chi^- \to W^+W^-$ annihilation

Recall that the Sommerfeld effect:

$$\chi^0 \chi^0 \to \chi^+ \chi^- \to \chi^0 \chi^0 \to \dots \to SM$$

To be consistent one needs also to compute one-loop corrections to $\chi^+\chi^- \to W^+W^-$ annihilation

Then the Sommerfeld enhanced amplitude:

$$A^{SE}_{\chi^0\chi^0 \to W^+W^-} = \underline{s_0}A_{\chi^0\chi^0 \to W^+W^-} + \underline{s_{\pm}}A_{\chi^+\chi^- \to W^+W^-}$$

where s_0 and s_{\pm} are (complex) Sommerfeld factors

The total results for the σv vs. DM mass *m* :

• tree level result $\sim 1/m^2$

- tree level result $\sim 1/m^2$
- when g at the scale m is used with SM running

- tree level result $\sim 1/m^2$
- when g at the scale m is used with SM running
- full $\mathcal{O}(g^6)$ result (with one-loop Sommerfeld correction)

- tree level result $\sim 1/m^2$
- when g at the scale m is used with SM running
- full $\mathcal{O}(g^6)$ result (with one-loop Sommerfeld correction)
- tree level with re-summed Sommerfeld effect

- tree level result $\sim 1/m^2$
- when g at the scale m is used with SM running
- full $\mathcal{O}(g^6)$ result (with one-loop Sommerfeld correction)
- tree level with re-summed Sommerfeld effect
- full $\mathcal{O}(g^6)$ result with re-summed Sommerfeld effect

- tree level result $\sim 1/m^2$
- when g at the scale m is used with SM running
- full $\mathcal{O}(g^6)$ result (with one-loop Sommerfeld correction)
- tree level with re-summed Sommerfeld effect
- full $\mathcal{O}(g^6)$ result with re-summed Sommerfeld effect
- what if g at the scale m is used for the Sommerfeld effect

One-loop $\chi^+\chi^-$ **to neutral gauge bosons**

Analogically, due to Sommerfeld enhancement, additional annihilation channels:

$$\chi^0 \chi^0 \to \chi^+ \chi^- \to ZZ, Z\gamma, \gamma\gamma$$

Cross-section for $\chi^0 \chi^0 \rightarrow ZZ, Z\gamma, \gamma\gamma$

At the leading order (LO) the annihilation into ZZ, $Z\gamma$ or $\gamma\gamma$ occurs at $\mathcal{O}(g^8) \rightarrow$ dotted lines

Sommerfeld effect is suppressing in the low *m* region (since one-loop corrections are negative) but gives strong enhancement near the resonance

Wino DM detection

How one can experimentally test the heavy Wino DM scenario?

- Direct Detection → too heavy: sensitivity drops at a TeV scale ⇒ NO (or at least not now, possibly in next generation, e.g. DARWIN)
- LHC \rightarrow again too heavy \Rightarrow NO
- Indirect Detection \Rightarrow YES?

Two interesting questions:

- Is the thermal Wino still allowed and if yes, can it be probed in near future?
- Can Wino explain CR anomalies? [e.g. Grajek et al. '08; Kane et al. '09]

\bar{p} flux

Propagation parameters:
$\delta = 0.5$
$z_d = 4 \mathrm{kpc}$
$r_d = 20 \mathrm{kpc}$
$dv_c/dz = 0$
$D_0 = 2.49 \times 10^{26} \mathrm{cm}^2/\mathrm{s}$
$\eta = -0.365$ $v_A = 19.5 \mathrm{km/s}$
$\mathbf{P}_{\mathbf{A}}$ = $\mathbf{P}_{\mathbf{A}}$ = $\mathbf{P}_{\mathbf{A}}$ = $\mathbf{P}_{\mathbf{A}}$

Best fit from [Cholis et al.; 1106.5073]

Andrzej Hryczuk

 ν_{μ} spectrum

 γ spectrum 100 100 m_{DM} = 2700 GeV Tree level mDM = 3000 GeV Tree level $\Omega_{\rm DM} = 0.1$ PPPC4DMID PPPC4DMID $\Omega_{DM} = 0.103$ $<\sigma v >= 9.61 \times 10^{-25} \text{ cm}^3/\text{s}$ One-loop level $<\sigma v >= 2.85 \times 10^{-25} \text{ cm}^3/\text{s}$ One-loop level One-loop + Sommerfeld effect One-loop + Sommerfeld effect 10 10 xb/dx xb/dx 0.1 0.1 0.01 0.01 10-4 0.001 0.01 0.1 0,001 0.01 10-4 x=E/m x=E/m

ν_{μ} spectrum

Can it explain CR anomalies?

\bar{p} flux 100 PAMELA '10 mrss = 2400 GeV Ωnm = 0.062 $\langle \sigma v \rangle = 5.71 \times 10^{-23} \text{ cm}^3 / \text{s}$ 10 $\Phi_p \, [MeV^{-1}m^{-2}s^{-1}sr^{-1}]$ 0.1 0.01 0.001 10-4 10 100 500 1000

E [GeV]

The strategy:

- look for max. cross-section allowed by \bar{p} data \Rightarrow resonance
- is it sufficient to solve e^+/e^- puzzle?
- check if it satisfies constraints from \overline{d} , ν s and γ

Can it explain CR anomalies?

 \bar{d} flux

Can it explain CR anomalies?

Conclusions

Andrzej Hryczuk

Conclusions

- Electroweak corrections cannot be neglected in the computation of heavy DM annihilation processes
- Full O(g⁶) computation needed to correlate some of the spectral features (like lines or bumps) with the diffuse spectrum
- In all cases when Sommerfeld effect can occur it must be included and we provide a method how to do that in a consistent way
- Taking simply the β-function and using RGE without threshold corrections is incorrect way to proceed
- Thermal Wino DM can be most easily found/excluded in γ rays, antideuterons and (maybe) neutrinos
- Resonant case disfavoured by data ⇒ Wino DM does not solve the CR
 puzzle