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What is the origin of inflation?

We often say, “Standard Model of particle physics (SM) does not have 
any candidates for inflaton and hence we need physics beyond the SM.” 

Is this true? There is a scalar field 
in the SM, the Higgs field. 
Isn’t it possible for the Higgs 
field to be the inflaton?

This question becomes important 
because we are now close to the 
discovery of the SM Higgs field. 



Why is it considered that the 
Higgs field cannot be inflaton?

New inflation?

: impossible because the potential 
is too steep to realize accelerating 
expansion of the Universe. 

(’82, Linde)



Why is it considered that the 
Higgs fields cannot be inflaton?

Chaotic inflation?
: possible to realize accelerating 
expansion of the Universe, but the 
primordial density perturbation 
becomes too large. 

for

is inconsistent with 

the observation
(WMAP(’11))

(’83, Linde)



However, these conclusions are based on a theory with the 
canonical kinetic term and minimal coupling to gravity. 

There would arise possibilities that the SM Higgs field is 
the inflaton if we loose the above assumptions. 



The first possibility is to consider nonminimal coupling to gravity. 

For             , the effective Planck 
mass becomes large 

and hence the primordial density 
fluctuation is suppressed. 
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(’84, Spokoiny; ’89 Futamase & Maeda)

This can be also understood by considering the effective potential
in the Einstein frame. 

(’08, Bezrukov & Shaposhnikov)



Nonminimal coupling to gravity is the only possibility to realize 
the SM Higgs inflation up to renormalizable level. 



Nonminimal coupling to gravity is the only possibility to realize 
the SM Higgs inflation up to renormalizable level. 

However, since the Einstein gravity is not renormalizable, we do 
not have to require renormalizability to inflation model as long 
as it is valid up to inflationary scale. 

New Higgs inflation (’10, Germani & Kehagias), 
running kinetic inflation (’10, Nakayama & Takahashi),
Higgs G-inflation (’11, Kamada, Kobayashi, Yamaguchi, & Yokoyama)

Noncanonical kinetic terms make Higgs inflation models possible. 
(chaotic inflation type)



However, since the Einstein gravity is not renormalizable, we do 
not have to require renormalizability to inflation model as long 
as it is valid up to inflationary scale. 

In this motivation, we require that the basic field equations 
should be expressed by up to 2nd order derivative terms in 
order to avoid ghost instability. 

This would be the most general possibility of the SM Higgs inflation, 
which should be listed in preparation for the forthcoming discovery 
of the SM Higgs at LHC. 

Nonminimal coupling to gravity is the only possibility to realize 
the SM Higgs inflation up to renormalizable level. 

New Higgs inflation (’10, Germani & Kehagias), 
running kinetic inflation (’10, Nakayama & Takahashi),
Higgs G-inflation (’11, Kamada, Kobayashi, Yamaguchi, & Yokoyama)

Noncanonical kinetic terms make Higgs inflation models possible. 
(chaotic inflation type)



The most general theory of gravity and scalar fields with up to 2nd 
order derivatives is described by so-called “generalized Galileons”

(’74, Horndeski; ’09, ’10, ’11, Deffayet+; )
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This is the covariantization of field equations with Galilean shift 
symmetry (Galileon (’09, Nicolis+)) in flat space:  ∂µφ→ ∂µφ + bµ

Inflation model with generalized Galileons is called “G-inflation”. 
(’10, Kobayashi, Yamaguchi, Yokoyama)
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This means that all the single field inflation models with 2nd 
order field equations are described by only 4 functions;

Hereafter we neglect all the higher order terms in     .X

i = 3, 4, 5

This expansion contains 5 independent functions, 

K(φ, X) =− V (φ) + K(φ)X + · · · ,

Gi(φ, X) =gi(φ) + hi(φ)X + · · · .

K, g4, h3, h4, h5
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This means that all the single field inflation models with 2nd 
order field equations are described by only 4 functions;

Hereafter we neglect all the higher order terms in     .X

i = 3, 4, 5

This expansion contains 5 independent functions, 

(Original) Higgs inflation −ξh2

2
R ⇔ g4 = −ξh2

2(’08, Bezrukov & Shaposhnikov)
New Higgs inflation

(’08, Germani & Kehagias) ⇔1
2µ2

Gµν∂µh∂νh h5 =
1

2µ2

running kinetic inflation
(’10, Nakayama & Takahashi) −κ

2
h2∂µh∂µh ⇔

K(φ, X) =− V (φ) + K(φ)X + · · · ,

Gi(φ, X) =gi(φ) + hi(φ)X + · · · .

K = κh2

K, g4, h3, h4, h5

Higgs G-inflation
(’11, Kamada+)
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Then, we find the last possibility of the SM Higgs inflation, 

h5 =
h

m6

h

2m6
∂ρh∂ρhGµν∇µ∇νh− h

m6

�
(�h)3 − 3(�h)(∇µ∇νh)2 + 2(∇µ∇νh)3

�⇒
“running Einstein inflation”



Then, we find the last possibility of the SM Higgs inflation, 

h5 =
h
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“running Einstein inflation”

This completes the possibility of single field 
inflation model without ghost instability, 

including the SM Higgs inflation. 



Field equations
... Friedmann equation and the scalar field equation are extended. 

Under the homogeneous and isotropic background, 
ds2 = −dt2 + a(t)2dx2, φ(x, t) = φ(t)

E2 = 2XKX −K,
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E4 = −6H
2
G4 + 24H

2
X(G4X + XG4XX)

− 12HXφ̇G4φX − 6Hφ̇G4φ,

E5 = 2H
3
Xφ̇ (5G5X + 2XG5XX)

− 6H
2
X (3G5φ + 2XG5φX) ,

5�

i=2

Ei = 0,

gravitational field equation
1
a3

d
dt

�
a3J

�
= Pφ,

scalar field equation

J = φ̇KX + 6HXG3X − 2φ̇G3φ

+ 6H
2
φ̇ (G4X + 2XG4XX)− 12HXG4φX

+ 2H
3
X (3G5X + 2XG5XX)

− 6H
2
φ̇ (G5φ + XG5φX) ,

Pφ = Kφ − 2X

�
G3φφ + φ̈G3φX

�

+ 6
�
2H

2 + Ḣ
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Potential-driven slow-roll inflation
Requiring slow-roll conditions: 

� := − Ḣ

H2
� 1, η := − φ̈

Hφ̇
� 1, δ :=

ġ4

Hg4
� 1, , α2 :=

K̇
HK � 1, αi :=

ḣi

Hhi
� 1 (i = 3, 4, 5).

and potential domination: V � φ̇J

Slow-roll equations: 

J � Kφ̇ + 3h3Hφ̇
2 + 6h4H

2
φ̇ + 3h5H

3
φ̇

2

Large effective Planck mass; 
Flatten the potential

6g4H
2 � V , 3HJ � −V

� + 12H
2
g

�
4

Additional friction term

Mplsub-Planckian inflation becomes possible!!!



Information from observation:  
               Cosmological perturbations

... needed to determine/constrain the parameters

42 Komatsu et al.

(We found a = 0.67±0.09 and 0.43±0.12 for rout = 6r500.
See Table 13.) These results are somewhat puzzling -
the X-ray observations directly measure gas out to r500,
and thus we would expect to find a ≈ 1 at least out to
r500. This result may suggest that, as we have shown in
Section 7.3, the problem is not with the outskirts of the
cluster, but with the inner parts where the cooling flow
has the largest effect.
The relative amplitudes between high and low LX clus-

ters suggest that a significant amount of pressure is miss-
ing in low mass (M500 ! 4×1014 h−1 M") clusters, even
if we scale all the results such that high-mass clusters
are forced to have a = 1. A similar trend is also seen
in Figure 3 of Melin et al. (2010). This interpretation is
consistent with the SZ power spectrum being lower than
theoretically expected. The SPT measures the SZ power
spectrum at l " 3000. At such high multipoles, the con-
tributions to the SZ power spectrum are dominated by
relatively low-mass clusters, M500 ! 4 × 1014 h−1 M"

(see Figure 6 of Komatsu & Seljak 2002). Therefore,
a plausible explanation for the lower-than-expected SZ
power spectrum is a missing pressure (relative to theory)
in lower mass clusters.
Scaling relations, gas pressure, and entropy of low-

mass clusters and groups have been studied in the
literature.41 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (81)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on un-
derstanding the gas pressure profiles, both the amplitude
and the shape, especially in low-mass clusters. New mea-
surements of the SZ effect toward many individual clus-
ters with unprecedented sensitivity are now becoming
available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2010). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polariza-
tion data, new measurements of H0 (Riess et al. 2009),
and improved large-scale structure data (Percival et al.
2009), we have been able to rigorously test the stan-
dard cosmological model. The model continues to be
an exquisite fit to the existing data. Depending on
the parameters, we also use the other data sets such
as the small-scale CMB temperature power spectra
(Brown et al. 2009; Reichardt et al. 2009, for the primor-
dial helium abundance), the power spectrum of LRGs
derived from SDSS (Reid et al. 2010a, for neutrino prop-
erties), the Type Ia supernova data (Hicken et al. 2009b,

41 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).

Fig. 20.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation mod-
els whose potential is given by V (φ) ∝ φα (Linde 1983), with
α = 4 (solid) and α = 2 (dashed) for single-field models, and
α = 2 for multi-axion field models with β = 1/2 (dotted;
Easther & McAllister 2006).

for dark energy), and the time-delay distance to the
lens system B1608+656 (Suyu et al. 2010, for dark en-
ergy and spatial curvature). The combined data sets
enable improved constraints over the WMAP-only con-
straints on the cosmological parameters presented in
Larson et al. (2010) on physically-motivated extensions
of the standard model.
We summarize the most significant findings from our

analysis (also see Table 2, 3, and 4):

1. Gravitational waves and primordial power
spectrum. Our best estimate of the spectral index
of a power-law primordial power spectrum of curva-
ture perturbations is ns = 0.968±0.012 (68% CL).
We find no evidence for tensor modes: the 95% CL
limit is r < 0.24.42 There is no evidence for
the running spectral index, dns/d ln k = −0.022±
0.020 (68% CL). Given that the improvements
on ns, r, and dns/d lnk from the 5-year results
are modest, their implications for models of infla-
tion are similar to those discussed in Section 3.3
of Komatsu et al. (2009a). Also see Kinney et al.
(2008), Peiris & Easther (2008) and Finelli et al.
(2010) for more recent surveys of implications for
inflation. In Figure 20, we compare the 7-year
WMAP+BAO+H0 limits on ns and r to the pre-
dictions from inflation models with monomial po-
tential, V (φ) ∝ φα.

2. Neutrino properties. Better determinations of
the amplitude of the third acoustic peak of the
temperature power spectrum and H0 have led to
improved limits on the total mass of neutrinos,
∑

mν < 0.58 eV (95% CL), and the effective num-
ber of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL),
both of which are derived from WMAP+BAO+H0
without any information on the growth of struc-
ture. When BAO is replaced by the LRG power

42 This is the 7-year WMAP+BAO+H0 limit. The 5-year
WMAP+BAO+SN limit was r < 0.22 (95% CL). For comparison,
the 7-year WMAP+BAO+SN limit is r < 0.20 (95% CL). These
limits do not include systematic errors in the supernova data.

’11, Komatsu+

Amplitude of the powerspectrum of 
primordial density perturbation

Spectral tilt of the powerspectrum of 
primordial density perturbation

ns =
d lnPR
d ln k

and amplitude of tensor perturbation,
parameterized by the scalar-to-tensor 
ratio,

r =
PT

PR
are constrained by WMAP observations. 



Primordial perturbations 
in potential-driven Generalized G-inflation
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scalar perturbation: 

tensor perturbation: 

By using this formulation, we can distinguish the SM Higgs inflation models  
(or their combination) from the cosmological observations. 



For the SM Higgs inflation, 
ξ � 104, µ � 1011GeV, M � 1013GeV, and so on

Moreover, we find the consistency relation, 

r = −8nT

for      (original Higgs inflation),       (New Higgs inflation), 
and      (running kinetic inflation) domination.  

g4

K
h4

r = −32
√

6
9

nT

for      (Higgs G-inflation), and      (running Einstein inflation) 
domination.  

h3 h5

This also would help model discrimination. 

nT ≡
d lnPT

d ln k
is the spectral tilt of tensor perturbation. 



However...
it is known that quantum correction to the Higgs potential is important, 
especially for the 125 GeV Higgs. 

(’12, Elias-Miro+)
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Figure 1: Spectral index ns depending on the Higgs mass mH , calculated with the RG enhanced
effective potential. Nearly horizontal coloured stripes correspond to the normalization prescription
I and different mt. Green, red, and blue stripes give the result with normalization prescription II
for different mt and αs = 0.1176, two white regions correspond to different αs and mt = 171.2 GeV.
The width of the stripes corresponds to changing the number of e-foldings between 58 and 60, or
approximately one order of magnitude in reheating temperature.
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Figure 2: Tensor-to-scalar ratio r depending on the Higgs mass mH , calculated with the RG
enhanced effective potential. Nearly horizontal solid lines correspond to the normalization pre-
scription I. Green, red, and blue dashed lines give the result with normalization prescription II for
mt = 169.1, 171.2, 173.3 GeV. Dependence on the number of e-foldings is very small.

have the weak coupling (somewhat arbitrary we set the requirement λ < 6) in the region

MP /ξ we obtain, in 2-loop approximation,

mI
max =

[

193.9 +
mt − 171.2

2.1
× 0.6 −

αs − 0.1176

0.002
× 0.1

]

GeV . (7.2)

Note that the requirement to have weak coupling up to µ = MP is somewhat stronger,

mH < 173.5GeV (for central values of mt and αs). Also, the requirement that λ(µ) > 0

for µ < MP is just slightly stronger, than (7.1), giving the interval of the Higgs masses for

– 13 –

(’09, Bezrukov & Shaposhnikov)

This is because the quartic coupling becomes negative around        GeV
for the 125 GeV Higgs. 

1010

⇒Evaluation of the quantum correction 
   to generalized Higgs inflation is our future study.  



Conclusion & Discussion

✓The possibility that the SM Higgs field is the inflaton still remains if 
we consider nonminimal coupling to gravity or noncanonical kinetic 
terms.
✓We find that all the Higgs inflation models proposed thus far can be 
understood in terms of potential-driven generalized G-inflation. 
✓We find another class of single field inflation model, “running 
Einstein inflation”. 
✓Quantum correction to the Higgs potential should be evaluated. 

We can tell whether the SM Higgs can be inflaton or not 
in the near future !!!



Backup slides



metric perturbations:

ds2 = −N2dt2 + γij

�
dxi + N idt

� �
dxj + N jdt

�
,

N = 1 + δn, Ni = ∂iχ,

γij = a2(t)e2ζ

�
δij + hij +

1
2
hikhkj

�
.

δn, χ can be removed by constraint equations. 



Quartic action for tensor perturbations: 

S(2)
T =

1
8
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dtd3x a3

�
GT ḣ2

ij −
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�
,

where
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��
,

GT := 2
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G4 − 2XG4X −X

�
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��
.

spectral tilt of tensor perturbation is evaluated as, 

fT :=
ḞT

HFT
, gT :=

ĠT

HGT

νT :=
3− � + gT

2− 2�− fT + gT
.

nT = 3− 2νT .



Quartic action for scalar perturbations: 

S(2)
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spectral tilt: 
ns − 1 = 3− 2νS .

fS :=
ḞS

HFS
, gS :=

ĠS

HGS
,

νS :=
3− � + gS

2− 2�− fS + gS
.



Bispectrum:
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Nongaussianity
f eqil
NL =

5
81

�
C1 + 6C2 +

51
2
C3 −

13
2
C4

�

� 5
243

(1− u/W )2 (99− 43u/W )
(4− u/W )2 (2− u/W )

.

f equil
NL ≈ 5

81
c2
s � 1.

for u ≈ −6Hφ̇v

For the specific choice of parameters, 
large nongaussianity can be generated even in the SM Higgs inflation. 


