

Fakultät Mathematik und Naturwissenschaften, Fachrichtung Physik

Recent Results from the ATLAS Experiment

Michael Kobel Dresden University of Technology on behalf of the ATLAS Collaboration

PLANCK 2012, 28.5.2012

The big picture

TECHNISCHE UNIVERSITÄT DRESDEN

Most prominent goals of the LHC

- Further scrutinize the Standard Model
 - Are there indeed only 3 families? (Why?)
 - Is the top quark just a normal quark?

Find symmetry breaking mechanism at the Origin of Mass

- LHC is exactly at the right energy ~ TeV (10⁻¹² sec)!
- Something MUST happen!
 - SM Higgs mechanism will either be detected or excluded
 - If excluded, another mechanism should be found
- Are there additional symmetries?
 - Supersymmetry between Fermions and Bosons?
 - Extra Gauge symmetries (Z', W', ...)

Any other expected or unexpected New Physics?

• Extra dimensions, exotic ...

LHC: Cross-sections and Luminosity

LHC: performance 2012

Multi-purpose, high resolution and highly hermetic detector ATLAS: Magnets 🗲 1 Central Solenoid + 3 air-core toroids Tracking 🗲 Silicon+Transition radiation tracker EM calo 🗲 Sampling LAr calo HAD calo 🗲 Plastic scintillator (barrel) + LAr technology (endcap) Trigger chambers (RPC and TGC) + Precision chambers (MDT and CSC) Muon **→ EM Calorimeter Muon Spectrometer Reconstructed Objects:** - leptons - electrons - muons - taus - photons - jets - missing energy - b-jets Kinematic variables: $-p_{T}=|p|\sin\theta$ $-\eta = -\log \tan(\theta/2)$ Hadronic calorimeter **Inner Detector**

Warsaw, 28.05.2012

Michael Kobel

/ of 41

STANDARD MODEL MEASUREMENTS

Out of \sim 50 SM papers 2 topics selected :

- 1. W/Z + Jets
- 2. Di-Boson Production (WW,ZW,ZZ)

Understanding Z/W+Jets

Phys. Rev. D 85 (2012) 092002 (6.1.12)

 10^{3}

102

dt=36 pb

dơ/dp_⊤ [pb/GeV]

W→lv + jets

ALPGEN

△ SHERPA

ATLAS

⊖ Data 2010, √s=7 TeV

BLACKHAT-SHERPA

- ✤ W and Z total cross-sections:
 - Δ lumi = 3.4% dominant already w/ 2010 data
 - limits conclusions from comparison with theory

250

First Jet p₋ [GeV]

300

W+b and Z+b cross-sections

http://arxiv.org/abs/1109.1403, http://arxiv.org/abs/1109.1410

- Sensitive test for parton density function (pdf) models
- η -dependent mix between contributing processes (plus sea quarks):
 - dependence on parton distributions visible as function on η_{ℓ}
 - Very forward η_l : sign inversion due to weak parity violation (l_L^- preferred)

TECHNISCHE UNIVERSITAT DRESDEN DETERMINATION OF the strange quark density http://arxiv.org/abs/1203.4051, 19.3.2012, accepted by PRL

Result: better fit w/o s-suppression, i.e. $r_s \sim 1$

Candidate event for ZZ \rightarrow ee $\mu\mu$

- SM test, limits on anomalous triple gauge couplings (TGC)
- Understand ZZ and WW background for Higgs searches

Di-Boson Production: ZZ \rightarrow $\ell\ell\ell\ell + \ell\ell_{VV}$ ATLAS-CONF-2012-021, ATLAS-CONF-2012-026 (4.+7.3.12) arXiv:1110.5016v1(TGC limits) (23.10.11)

Charged triple gauge couplings WW γ WWZ

applying C and P invariance & low-energy constraints: 3 parameters left general WW γ and WWZ interaction: 14 parameters

$$\begin{split} \kappa_{\gamma} &= 1, \qquad g_{1}^{Z} = 1, \qquad \lambda_{\gamma} = 0 \\ related by custodial SU(2) with: \\ \kappa_{Z} &= g_{1}^{Z} - tan^{2}\theta_{W}(\kappa_{\gamma} - 1), \qquad \lambda_{Z} = \lambda_{\gamma} \end{split}$$

relation with static W properties: magnetic dipole moment

$$\mu_{W} = \frac{e}{2m_{W}} \left(1 + \kappa_{\gamma} + \lambda_{\gamma} \right)$$

electric quadrupole moment

$$Q_W = \frac{e}{m_W^2} \left(\kappa_{\gamma} - \lambda_{\gamma} \right)$$

relation with W substructure:

Average W radius

$$R_{W} = \frac{\kappa_{\gamma} + \lambda_{\gamma} - 1}{m_{W}} = \frac{2}{e} \Delta \mu_{W}$$

Deformation

$$D_{W} = \frac{5}{4} \frac{\kappa_{\gamma} - \lambda_{\gamma} - 1}{m_{W}^{2}} = \frac{5}{4e} \Delta Q_{W}$$

SM values

Production @ LHC 7 TeV

1. Cross-sections

- 2. Mass
- 3. FCNC

• Theory: σ_{tt} (7 TeV) = 165⁺¹¹₋₁₆ pb

All hadronic

100

4.7 fb

50

 $168 \pm 12^{+60}_{-57} \pm 6 \text{ pb}$

300

350

200

 $\sigma_{_{\rm ff}}$ [pb]

250

150

Some single t analyses http://arxiv.org/abs/1205.3130v1 http://arxiv.org/abs/1203.0529 http://arxiv.org/abs/1203.0529

• BSM physics: FCNC up to O(10⁻⁴) possible

top quark mass

http://arxiv.org/abs/1203.5755 (26.3.12) ATLAS-CONF-2012-030, (14.3.12)

- Measured w/ 1.04 fb⁻¹ in {+jets channel
 - \geq 4 jets with \geq 1 b-tag

TECHNISCHE

UNIVERSITÄT DRESDEN

- jjb combination w/ highest p_T defines m_t^{reco}
- In-situ Jet Scaling Factor JSF from m_W^{reco}
- 2d (m_t^{reco}, JSF) template analysis resulting in
 - JSF(e)=0.985±0.008, JSF(µ)=0.986±0.006
 - $m_t^{reco} = 174.5 \pm 0.6 \pm 2.3 \text{ GeV}$
- Also first measurement in all-had channel

• $m_t^{reco} = 174.9 \pm 2.1 \pm 3.8 \text{ GeV}$

SM HIGGS SEARCHES

- 1. ZZ 2. WW
- 3. γγ

нο

HO

HO

HО

Discover Higgs field by Higgs Boson production

bb

 $\tau^+\tau^-$

100

 10^{-1}

 10^{-2}

 10^{-3}

50

BR(H)

- Higgs Boson ~ excitation of Higgs field (Rather like a vortex ~ excitation of air)
- Need to move massive particles with high E through Higgs field to create excitations
- Higgs decays predicted
 - In SM just depend on unknown M_H

00000000000

00000000

0000000000

g g fusion

2Z: most sensitive channel above $m_H > 200 \text{ GeV}$

- IIvv subchannel (most sensitive above 300 GeV) 🤶
 - Discriminant: transverse mass

$$m_{\rm T}^2 \equiv \left[\sqrt{m_{\rm Z}^2 + |\vec{p}_{\rm T}^{\ \ell\ell}|^2} + \sqrt{m_{\rm Z}^2 + |\vec{p}_{\rm T}^{\ {\rm miss}}|^2}\right]^2 - \left[\vec{p}_{\rm T}^{\ \ell\ell} + \vec{p}_{\rm T}^{\ {\rm miss}}\right]^2$$

- exclusion range
 320 GeV<m_H<560GeV
- Ilqq subchannel

TECHNISCHE UNIVERSITÄT DRESDEN

- Discriminant: Iljj mass, low/high mass cuts, optional Z→bb tagging (to suppress Z+Jets)
- Contributes significantly to limit below ~ 400 GeV

- "Golden channel" (virtually no background, other than true SM ZZ)
- Most sensitive of all channels for 200 GeV $< m_{H} < 300$ GeV
- ✤ 2nd most sensitive (after WW) for 130 GeV<m_H<200 GeV</p> but much better mass resolution than WW

- Most sensitive SM Higgs decay channel in range [120;200] GeV but much worse mass resolution than ZZ
- Most promising final state: $\ell^+ \nu \ell^- \nu$, $\ell = (e, \mu)$
- Essential preselection cuts:
 - $E_{\text{T,rel}}^{\text{miss}} = \begin{cases} E_{\text{T}}^{\text{miss}} & \text{if } \Delta \phi \ge \pi/2 \\ E_{\text{T}}^{\text{miss}} \cdot \sin \Delta \phi & \text{if } \Delta \phi < \pi/2 \end{cases} > 40(\ell\ell) / 25(\text{e}\mu)\text{GeV with } \Delta \phi = \angle (\text{E}_{\text{T}}^{\text{miss}}, \ell \text{ or jet}) \end{cases}$

• $N_{jets} = 0, 1 \text{ or } 2$

Kinematic separation

Spin correlation:

- $m_{\ell\ell} < 50-80$ GeV (dep. on n-jet, $\ell\ell$)
- 2-jet: Cuts for Vector Boson Fusion
 - |Δη_{ii}| > 3.8, m_{ii} > 500 GeV, CJV

WW-Results ATLAS-CONF-2012-12

Warsaw, 28.05.2012

Michael Kobel

Expected sensitivity per channel

Observed limits per channel

ATLAS combination ATLAS-CONF-2012-019, 5.3.12

Low-mass region

DRESDEN

ECHNISCHE UNIVERSITÄT

Excluded at 95% CL

- 110.0 117.5 GeV, 118.5 122.5 GeV, and 129 539 GeV
- Excess at ~ 126 GeV
 - Local significance: 2.5 σ (expect 2.9 σ for SM Higgs Boson at that mass)
 - *Prob. of such a background fluctuation including "look-elsewhere*" effect
 - 30% anywhere in the mass range 110–600 GeV
 - 10% anywhere in range* 110–146 GeV (*not excluded by LHC at 99%CL)

Complete region

Prospects for 2012 at 125 GeV

From: Eilam Gross, LHC2TSP, March 2012

- ✤ With 5 fb⁻¹ @ 7TeV
 - Expected ATLAS sensitivity: 3σ
 - Would need 15 fb⁻¹ to get 5σ
- ❖ Gain from 7→ 8 TeV
 - Corresp. to 20% Lumi
 - Corresp. to 10% significance

✤ Need 12 fb⁻¹ @ 8 TeV

- For 5σ significance in each experiment
- Combining w/ 7 TeV
 - ~ 8 fb⁻¹ @ 8 TeV needed for discovery

Prospects for 8 TeV running in 2012

- At least 15 fb⁻¹ planned
- So far 2.5 fb⁻¹ delivered w/ ~ 0.5 fb⁻¹ /week

BSM SEARCHES (SELECTED EXAMPLES)

- 1. SUSY
 - i. Dedicated sparticle searches (not covered, example here)
 - ii. General topological searches
- 2. Extra dimensions

- Super-Symmetrie between Fermions and Bosons O|Boson> = |Fermion> und O|Fermion> = |Boson>
 - For each Fermion there is a bosonic partner
 - For each Boson there is a fermionic partner

Simplifying assumption of ConstraintMSSM: Unification at Λ_{GUT}

Electroweak symmetry breaking occurs because $m_{H_u}^2 + \mu^2$ runs negative near the electroweak scale. This is due directly to the large top quark Yukawa coupling.

TECHNISCHE UNIVERSITÄT DRESDEN

SUSY exclusion overview

Status: March 2012,

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

		ATLAS SUSY Searches [*] - 95% CL Lower Limits (Status: March 2012)					
Inclusive searches	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.40 TeV $\tilde{q} = \tilde{g}$ mass					
	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	$L=4.7 \text{ (b}^{-1} (2011) \text{ (ATLAS-CONF-2012-041)} $ 1.20 TeV $\tilde{q} = \tilde{g} \text{ mass}$					
	MSUGRA/CMSSM : multijets + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV \tilde{g} mass (large m_0) is = 7 leV					
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.38 TeV \tilde{q} mass $(m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}_1^0$) ATLAS					
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 940 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$ Preliminary					
	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$					
	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV g̃ mass (tanβ < 35)					
	GMSB : $1-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV g̃ mass (tanβ > 20)					
	GMSB: $2-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 990 GeV \tilde{g} mass (tan β > 20)					
	$GGM: \gamma\gamma + E_{\tau, miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116] 805 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) > 50 \text{ GeV})$					
tion	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV g mass (m(\overline{\chi}_1^0) < 300 GeV)					
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{3}^{0}$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) < 150$ GeV)					
nerë	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0}$) : 2-lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004] 650 GeV g̃ mass (m(χ̃ ⁰ ₁) < 210 GeV)					
Third gei	Gluino med. t̃ (g̃→tī̄ χ̃ ₀) : multi-j's + E _{T.miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV g mass (m($\chi^0_{-})$ < 200 GeV)					
	Direct $\widetilde{b}\widetilde{b}$ ($\widetilde{b}_1 \rightarrow b\widetilde{\chi}_1^0$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV \tilde{b} mass $(m(\bar{\chi}_1^0) < 60 \text{ GeV})$					
	Direct tt̃ (GMSB) : Z(→II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_{3}^{0})$ < 230 GeV)					
DG	Direct gaugino $(\tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow 3 \tilde{\chi}_1^0)$: 2-lep SS + $E_{\tau, miss}$	$L=1.0 \text{ fb}^{-1}(2011) [1110.6189] \qquad 170 \text{ GeV} \tilde{\chi}_{1}^{\pm} \text{ mass } ((m(\tilde{\chi}_{1}^{0}) < 40 \text{ GeV}, \tilde{\chi}_{1}^{0}, m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{1}, \tilde{v}) = \frac{1}{2}(m(\tilde{\chi}_{1}^{0}) + m(\tilde{\chi}_{2}^{0})))$					
	Direct gaugino $(\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3I \tilde{\chi}_{1}^{0})$: 3-lep + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV $\bar{\chi}_{\pm}^{\pm}$ mass ($m(\bar{\chi}_{\pm}^{0}) < 170$ GeV, and as above)					
SS	AMSB : long-lived $\bar{\chi}_1^{\pm}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\tilde{\chi}_{1}^{\pm}$ mass (1 < $\tau(\tilde{\chi}_{2}^{\pm})$ < 2 ns, 90 GeV limit in [0.2,90] ns)					
rticl	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV ĝ mass					
l pa	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b mass					
ng-livea	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV t mass					
	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022] 810 GeV g mass					
Γc	GMSB : stable $\tilde{\tau}$	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV ₹ mass					
	RPV : high-mass eμ	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV \bar{v}_{τ} mass (λ_{311}^{2} =0.05)					
ΛdΣ	Bilinear RPV : 1-lep + j's + E _{T,miss}	<i>L</i> =1.0 fb ⁻¹ (2011) [1109.6606] 760 GeV q = g̃ mass (cτ _{I SP} < 15 mm)					
4	MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.77 TeV g mass					
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV sgluon mass (excl: $m_{sq} < 100$ GeV, $m_{sq} \approx 140 \pm 3$ GeV)					
		10 ⁻¹ 1 10					

*Only a selection of the available mass limits on new states or phenomena shown

Mass scale [TeV]

N.Arkani-Hamed, S.Dimopoulos and G.Dvali (ADD):

- Macroscopic n extra dimensions would explain EW-Planck hierarchy problem:
 - $M^2_{Planck} = M_D^{2+n} R^n$

TECHNISCHE UNIVERSITÄT

DRESDEN

• with $M_D \sim \text{TeV}$ fundamental Planck scale, $R \sim nm(n=3) \sim 10 \text{fm}(n=6)$

Micro black holes near threshold might decay to few particles, i.e. 2 Jets

- P. Meade and L. Randall, Black Holes and Quantum Gravity at the LHC, JHEP 0805 (2008) 003, arXiv:0708.3017
- L. A. Anchordoqui, J. L. Feng, H. Goldberg, and A. D. Shapere, *Inelastic black hole production and large extra dimensions, Phys. Lett. B594 (2004) 363, arXiv:0311365*
- Centrality $F_{\chi} = \frac{N_{\text{central}}}{N_{\text{total}}}$ of Dijet spectrum as function of m_{jj}
 - \rightarrow limits on production cross-section $\sigma \times$ acceptance \mathcal{A}
 - \rightarrow limits of M_D of O(4 TeV)

exotic exclusion overview

TECHNISCHE UNIVERSITÄT DRESDEN Status: March 2012, https://twiki.cerp.ch/twi

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV M	_ (δ=2)		
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]	3.0 TeV M _S	(GRW cut-off)	20	
(0	$\dot{U}ED: \dot{\gamma}\gamma + E_{T,micc}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 TeV Compact. scale	1/R (SPS8) Prelimi	narv	
ons	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\rm rr}$	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 TeV Graviton r	nass	,	
ISU	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm H}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Gravito	n mass	a -1	
me	RS with $k/M_{\rm Pl} = 0.1$: ZZ resonance, $m_{\rm HII/Hill}$	L=1.0 fb ⁻¹ (2011) [1203.0718]	845 Gev Graviton mass	$\int Ldt = (0.04 - 5.0)$	fb"	
lp e	RS with $g = -0.20$: $t\bar{t} \rightarrow l+jets, m$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 Tev KK gluon mass	s = 7	ΓeV	
xtr	ADD BH $(M_{TH}^{qqrk}M_{D}^{s}=3)$: multijet, Σp_{τ} , N_{iets}^{tt}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV M _D (δ=6)	•		
ш	ADD BH ($M_{TH}/M_{D}=3$) : SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV M _D (δ=6)			
	ADD BH ($M_{TH}/M_{D}=3$) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV M _D (δ=6)			
	Quantum black hole : dijet, $F_{\chi}(m_{jj})$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	4.11 TeV	M _D (δ=6)		
	qqqq contact interaction : χ̂(m)	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]		7.8 TeV A		
C	qqll Cl : ee, μμ combined, m _ื	L=1.1-1.2 fb ⁻¹ (2011) [1112.4462]		10.2 TeV A (constructive int.)		
	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV A			
~	SSM Z' : <i>m</i> _{•••/µµ}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass	3		
_	SSM W': m _{T.e/µ}	L=1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mas	S		
Q	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [1112.4828] 6	<mark>∞ Gev</mark> 1 st gen. LQ mass			
7	Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	L=1.0 fb ⁻¹ (2011) [Preliminary] 6	85 Gev 2 nd gen. LQ mass			
S	4^{th} generation : $Q_{\lambda}\overline{Q}_{\lambda} \rightarrow WqWq$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	A mass			
lar	4^{tn} generation : $\vec{u}_4 \overline{u}_4 \rightarrow WbWb$	L=1.0 fb ⁻¹ (2011) [1202.3076] 404 GeV	u ₄ mass			
nb /	4^{th} generation : $d_{A} \overline{d}_{A} \rightarrow WtWt$	L=1.0 fb ⁻¹ (2011) [Preliminary] 480 Ge	🖌 d₄ mass			
lew	New quark b' : b'চ'→ Zb+X, m _{zb}	L=2.0 fb ⁻¹ (2011) [Preliminary] 400 GeV	b' mass			
<	$T\overline{T}_{exo, 4th, een} \rightarrow t\overline{t} + A_0A_0$: 1-lep + jets + $E_{T, miss}$	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 GeV	T mass (m(A ₀) < 140 GeV)			
ш.	Excited quarks : γ -jet resonance, m	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV q* ma	SS		
fe.	Excited quarks : dijet resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038] 3.35 TeV q* mass				
Kcit	Excited electron : e-y resonance, m	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 2.0 TeV e ⁺ mass (A = m(e ⁺))				
Щ	Excited muon : μ - γ resonance, $m_{\mu\gamma}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$)				
	Techni-hadrons : dilepton, m _{ee/µµ}	L=1.1-1.2 fb ⁻¹ (2011) [ATLAS-CONF-2011-125] 470 Ge	$\rho_{\rm T}/\omega_{\rm T}$ mass (m($\rho_{\rm T}/\omega_{\rm T}$) - m(π,	r) = 100 GeV)		
	Techni-hadrons : vvz resonance (vili), m	L=1.0 fb ⁻¹ (2011) [Preliminary] 483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) = 1.1 m(\rho_{T}))$				
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary] 1.5 TeV N mass (m(W _R) = 2 TeV)				
the	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary] 2.4 TeV W_R mass ($m(N) < 1.4$ GeV)				
õ	H_{L}^{-} (DY prod., BR($H^{-} \rightarrow \mu\mu$)=1): SS dimuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV	i mass			
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar re	sonance mass		
	Vector-like quark : CC, m _{ivq}	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 Gev Q mass (coupling k	$_{qQ} = v/m_{Q}$		
Vector-like quark : NC, m_{lig} $L=1.0 \text{ fb}^{\circ}(2011) [1112.5755]$ 760 GeV Q mass (coupling $\kappa_{qQ} = \nu/m_Q$)						
		10 ⁻¹	1	10	10	

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

- Brilliant performance of LHC in 2011
- ATLAS detector very well understood
- Standard Model
 - $W/Z + \ge 5$ jets: precision measurements
 - Di-Boson: observation and improvements of TGC limits

Top-Quark

- Precision cross-section and mass
- Improving BSM limits, e.g. FCNC

SM Higgs

- Low-mass window narrowed to 118 GeV + 122.5 < m_{H} < 129 GeV
- Local 2.5 s.d. excess at 126 GeV:
 - backgr. $p_0 = 10\%$ including "look-elsewhere" in search range
 - most sensitive for $120 < m_H < 130$ GeV: WW, $\gamma\gamma$, and ZZ→4I

SUSY and Exotics

• Considerably improved exclusions in parameter spaces

BACKUP

***** 2010

- Understand an calibrate detector
- "Rediscover" Standard Model (SM)

***** 2011

- Precise understanding of SM at high energies
 - Influence of parton density functions
 - Distribution of extra jets in SM processes
 - Background to searches
- **New Physics**
 - Severely restrict allowed regions

***** 2012

- Closing in on the mass mechanism (Higgs or no Higgs?)
- ... and maybe more

σ_{total}

✤ W and Z Bosons

- Large x-sections*BR of 1-10 nb (~ 1-10 /s)
- $\bullet\,$ can be reconstructed with extremely high purity in both e and μ final state

Understanding extra jets, e.g. W+Jets

Phys. Rev. D 85 (2012) 092002 (6.1.12)

Berends-Giele scaling:

- Berends, Giele, Kuijf, Kleiss, Stirling, PLB 224, 237 (1989)
- Adding one more jet reduces x-section by constant factor, i.e. $\sigma(\geq N \text{ jets}) / \sigma(\geq N-1 \text{ jets}) = \text{const}$
- Has NLO corrections and depends on jet definition
- MC models:
 - ALPGEN and SHERPA: LO ME for multipartonic states
 - MCFM: NLO pQCD up to N_{jets} = 2 LO for N_{jets} = 3
 - Blackhat-SHERPA NLO pQCD up to $N_{jets} = 3$ LO for $N_{jets} = 4$

Inclusive Jet Multiplicity Ratio

TECHNISCHE
UNIVERSITÄT
DRESDENZ+Jets: No structures in Jet-Jet Masses
arxiv.org/abs/1111.2690 (11.11.11)

***** ATLAS prelim. : $t \rightarrow qZ < 11x10^{-3}$ at 95% CL (best to date)

Warsaw, 28.05.2012

ATLAS-CONF-2011-131, 21.8.2011

Warsaw, 28.05.2012

TECHNISCHE UNIVERSITÄT DRESDEN

The **"look-elsewhere**" effect

ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005

Estimate of the Look-Elsewhere Effect

The local p_0 , p_0^{min} and the corresponding maximum significance Z_{max} may be misleading. Estimate the global probability, $p_0^{gloabal}$ to observe p_0^{min} by counting the number of up-crossings $\int_{0}^{\infty} \int_{0}^{0} \int_{0}^{1} \frac{1}{2} Z_{max}^2$ Higgs boson mass

Figure 4: An illustration of a hypothetical scan of the test statistic q_0 vs m_H for some data. Up-crossings for a given threshold value u are shown with blue points.

To quantify an excess of events, we use the test statistic q_0 , defined as follows:

$$q_0 = -2\ln \frac{\mathcal{L}(\text{data}|0,\hat{\theta}_0)}{\mathcal{L}(\text{data}|\hat{\mu},\hat{\theta})} \quad \text{and } \hat{\mu} \ge 0.$$
(4)

This test statistic is known to have the proper χ^2 distribution, which allows us to evaluate significances (Z) and p-values (p_0) from the following asymptotic formula:

$$Z = \sqrt{q_0^{obs}},\tag{5}$$

$$p_0 = P(q_0 \ge q_0^{obs}) = \int_Z^\infty \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \frac{1}{2} \left[1 - \operatorname{erf}\left(Z/\sqrt{2}\right) \right].$$
(6)

Warsaw, 28.05.2012

Michael Kobel

Expected and observed significances for a 126 GeV Higgs

Best fit signal strengths

single channels

(a)

(c)

(e)

