

A stringy way of generating cosmological structure

David H. Lyth

Particle Theory and Cosmology Group Physics Department Lancaster University

K. Dimopoulos, K. Kohri, DHL and T. Matsuda, arXiv:1201.4312 [astro-ph.CO]

New scenario for generating primordial curvature perturbation.

Invokes stringy field theory:

K. Dimopoulos, K. Kohri, DHL and T. Matsuda, arXiv:1201.4312 [astro-ph.CO]

New scenario for generating primordial curvature perturbation.

Invokes stringy field theory:

1. MONODROMY for inflaton potential: $V(\phi) \propto \phi$

K. Dimopoulos, K. Kohri, DHL and T. Matsuda, arXiv:1201.4312 [astro-ph.CO]

New scenario for generating primordial curvature perturbation.

Invokes stringy field theory:

- **1.** MONODROMY for inflaton potential: $V(\phi) \propto \phi$
- 2. STRING AXION WITH ANOMALY-MEDIATED SUSY for curvaton potential

K. Dimopoulos, K. Kohri, DHL and T. Matsuda, arXiv:1201.4312 [astro-ph.CO]

New scenario for generating primordial curvature perturbation.

Invokes stringy field theory:

- **1.** MONODROMY for inflaton potential: $V(\phi) \propto \phi$
- 2. STRING AXION WITH ANOMALY-MEDIATED SUSY for curvaton potential

Highly predictive — MAY be ruled out by LHC or detection of tensor. Otherwise WILL be ruled out or confirmed by measurement of running of spectral index.

Primordial curvature perturbation observed

As each scale enters the horizon after inflation, PRIMORDIAL CURVATURE PERTURBATION ζ sets initial condition for (practically) all other perturbations.

As each scale enters the horizon after inflation, PRIMORDIAL CURVATURE PERTURBATION ζ sets initial condition for (practically) all other perturbations.

At $T \sim \text{MeV } \zeta(\mathbf{x})$ is measured on cosmological scales by CMB and galaxy surveys.

As each scale enters the horizon after inflation, PRIMORDIAL CURVATURE PERTURBATION ζ sets initial condition for (practically) all other perturbations.

At $T \sim \text{MeV } \zeta(\mathbf{x})$ is measured on cosmological scales by CMB and galaxy surveys.

HOW DID THIS $\zeta(\mathbf{x})$ ORIGINATE?

ζ in a nutshell

Definition: smooth metric on super-horizon scale, choose uniform- ρ slicing and comoving threading, then

 $\zeta \equiv \delta[\ln a(\mathbf{x}, t)]$

ζ in a nutshell

Definition: smooth metric on super-horizon scale, choose uniform- ρ slicing and comoving threading, then

 $\zeta \equiv \delta[\ln a(\mathbf{x}, t)]$

Energy conservation $dE = -pd\mathcal{V}$:

$$\dot{\rho}(t) = -3 \frac{\partial (\ln a(\mathbf{x}, t))}{\partial t} \left[\rho(t) + P(\mathbf{x}, t) \right]$$

So during an era when $P(\rho)$ is unique function, $\zeta = \text{const.}$

ζ in a nutshell

Definition: smooth metric on super-horizon scale, choose uniform- ρ slicing and comoving threading, then

 $\zeta \equiv \delta[\ln a(\mathbf{x}, t)]$

Energy conservation $dE = -pd\mathcal{V}$:

$$\dot{\rho}(t) = -3 \frac{\partial (\ln a(\mathbf{x}, t))}{\partial t} \left[\rho(t) + P(\mathbf{x}, t) \right]$$

So during an era when $P(\rho)$ is unique function, $\zeta = \text{const.}$

True for matter domination, radiation domination and single-field inflation.

Two formulas for ζ

FIRST ORDER:

$$\zeta(\mathbf{x},t) = H\delta t = -H\frac{\delta\rho(\mathbf{x},t)}{\dot{\rho}(t)}$$

with $\delta \rho$ defined on slice of uniform *a* ("flat slice").

Two formulas for ζ

FIRST ORDER:

$$\zeta(\mathbf{x},t) = H\delta t = -H\frac{\delta\rho(\mathbf{x},t)}{\dot{\rho}(t)}$$

with $\delta \rho$ defined on slice of uniform *a* ("flat slice").

EXACT:

$$\zeta(\mathbf{x},t) \equiv \delta[\ln a(\mathbf{x},t)] = \delta[\ln(a(\mathbf{x},t)/a(t))] \equiv \delta N(\mathbf{x},t)$$

where N is *e*-folds of expansion from ANY flat slice to uniform- ρ slice at time t.

Two formulas for ζ

FIRST ORDER:

$$\zeta(\mathbf{x},t) = H\delta t = -H\frac{\delta\rho(\mathbf{x},t)}{\dot{\rho}(t)}$$

with $\delta \rho$ defined on slice of uniform a ("flat slice").

EXACT:

$$\zeta(\mathbf{x},t) \equiv \delta[\ln a(\mathbf{x},t)] = \delta[\ln(a(\mathbf{x},t)/a(t))] \equiv \delta N(\mathbf{x},t)$$

where N is *e*-folds of expansion from ANY flat slice to uniform- ρ slice at time t.

First-order is good if non-gaussianity is above second-order level. For $f_{\rm NL}$ this means $|f_{\rm NL}| \gg 1$.

To get a simple result WE USE FIRST-ORDER.

Our potential

$$V(\phi, \sigma) = V(\phi) + V(\sigma)$$

INFLATON POTENTIAL:

 $V(\phi) \propto \phi^p$

with p = 1 (monodromy).

Our potential

 $\overline{V(\phi,\sigma)} = V(\phi) + V(\sigma)$ **INFLATON POTENTIAL:** $V(\phi) \propto \phi^p$

with p = 1 (monodromy).

CURVATON POTENTIAL:

$$V(\sigma) = V_0 \left(1 + \cos\frac{\pi\sigma}{\sigma_0}\right)$$

with

$$\sigma_0 \sim M_{\rm P}, \qquad m \equiv \sqrt{V_0} \pi / \sigma_0 \sim 100 \,{\rm TeV}$$

(It's a string axion with anomaly-mediated susy breaking.)

Here's what happens in our scenario.

Here's what happens in our scenario.

- Inflation with $V(\phi) \quad (V(\sigma) \ll V(\phi) and |V'(\sigma)| \ll |V'(\phi)|)$.
 - Curvaton field σ acquires classical gaussian perturbation $\delta\sigma(\mathbf{x},t)$ as each scale leaves the horizon, $\mathcal{P}_{\delta\sigma} = (H/2\pi)^2$.
- At this stage $\zeta \simeq \zeta_{\phi}(\mathbf{x}) = -H\delta\phi/\dot{V}$ and we choose H small enough for it to be negligible.

Here's what happens in our scenario.

- Inflation with $V(\phi) \quad (V(\sigma) \ll V(\phi) and |V'(\sigma)| \ll |V'(\phi)|)$.
 - Curvaton field σ acquires classical gaussian perturbation $\delta\sigma(\mathbf{x}, t)$ as each scale leaves the horizon, $\mathcal{P}_{\delta\sigma} = (H/2\pi)^2$.
- At this stage $\zeta \simeq \zeta_{\phi}(\mathbf{x}) = -H\delta\phi/\dot{V}$ and we choose H small enough for it to be negligible.
- Inflation ends giving matter and/or radiation $\rho_{\phi}(t) \gg V(\sigma)$.
 - $\sigma(\mathbf{x}, t)$ rolls slowly down its potential.

Inflating curvaton scenario (continued)

- When $V(\sigma)$ dominates energy density, few *e*-folds more inflation.
- We choose parameters so that interval between the two inflations is short enough that the (large) cosmological scales stay outside horizon.
 - So σ at each location evolves as in 'separate universe'.

Inflating curvaton scenario (continued)

- When $V(\sigma)$ dominates energy density, few *e*-folds more inflation.
- We choose parameters so that interval between the two inflations is short enough that the (large) cosmological scales stay outside horizon.
 - So σ at each location evolves as in 'separate universe'.
- Near start of second inflation, δσ causes increase of ζ. On cosmological scales we get the observed ζ(x).

Inflating curvaton scenario (continued)

- When $V(\sigma)$ dominates energy density, few *e*-folds more inflation.
- We choose parameters so that interval between the two inflations is short enough that the (large) cosmological scales stay outside horizon.
 - So σ at each location evolves as in 'separate universe'.
- Near start of second inflation, δσ causes increase of ζ. On cosmological scales we get the observed ζ(x).
- Second inflation ends when $V(\sigma)$ steepens and σ oscillates.
 - Eventual decay of σ produces standard Hot Big Bang.

The calculation

We use standard techniques:

- Einstein gravity
- Flat spacetime field theory
 - Equivalence principle embeds it in curved spacetime
- No particles before horizon exit
 - Practically mandatory for inflation to have begun.
- Vacuum fluctuation of fields set to zero before horizon exit.
 - A way of handling ultraviolet divergence.

Prediction for spectral index

$$n(k) - 1 = 2\eta_{\sigma} - 2\epsilon \equiv \frac{2M_{\rm P}^2}{V} \frac{d^2 V(\sigma)}{d\sigma^2} + 2\frac{\dot{H}}{H^2}$$

with σ and H evaluated at horizon exit.

Prediction for spectral index

$$n(k) - 1 = 2\eta_{\sigma} - 2\epsilon \equiv \frac{2M_{\rm P}^2}{V} \frac{d^2 V(\sigma)}{d\sigma^2} + 2\frac{\dot{H}}{H^2}$$

with σ and H evaluated at horizon exit.

We need $|\eta_{\sigma}| \ll 1$ during SECOND inflation so it's nearly zero at horizon exit. Hence

$$n(k) - 1 \simeq -2\epsilon \simeq -\frac{1}{2N_1(k)}$$

where $N_1(k)$ is number of *e*-folds of the FIRST inflation.

Prediction for spectral index

$$n(k) - 1 = 2\eta_{\sigma} - 2\epsilon \equiv \frac{2M_{\rm P}^2}{V} \frac{d^2 V(\sigma)}{d\sigma^2} + 2\frac{\dot{H}}{H^2}$$

with σ and H evaluated at horizon exit.

We need $|\eta_{\sigma}| \ll 1$ during SECOND inflation so it's nearly zero at horizon exit. Hence

$$n(k) - 1 \simeq -2\epsilon \simeq -\frac{1}{2N_1(k)}$$

where $N_1(k)$ is number of *e*-folds of the FIRST inflation.

Observation requires $n - 1 \simeq -0.03$

So we need $N_1(k) \simeq 14p = 14$ (recall $V(\phi) \propto \phi^p$)

Prediction for running

$$n' \equiv \frac{dn(k)}{d\ln k} = \frac{4(1-n)^2}{p} = 4(1-n)^2$$

WILL EVENTUALLY BE VERIFIED OR RULED OUT!

A quick aside

Standard cosmology after second inflation needs

$$\simeq N_1 - \ln(10^{-5}M_{\rm P}/H_1)/2 + N_2 \simeq 50$$

which does allow $N_1 \simeq 14$.

A quick aside

Standard cosmology after second inflation needs

 $\simeq N_1 - \ln(10^{-5}M_{\rm P}/H_1)/2 + N_2 \simeq 50$

which does allow $N_1 \simeq 14$.

Abandoning monodromy we could consider p = 2, justified by 'extra-natural inflation' or N-flation. Then $N_1 \simeq 28$ and n' = 0.0013 which should also be detectable.

Going further we could allow p = 4, indeed any p, but no justification for them and running might be too small to measure.

A quick aside

Standard cosmology after second inflation needs

 $\simeq N_1 - \ln(10^{-5}M_{\rm P}/H_1)/2 + N_2 \simeq 50$

which does allow $N_1 \simeq 14$.

Abandoning monodromy we could consider p = 2, justified by 'extra-natural inflation' or N-flation. Then $N_1 \simeq 28$ and n' = 0.0013 which should also be detectable.

Going further we could allow p = 4, indeed any p, but no justification for them and running might be too small to measure.

Note: for generic curvaton-type model (no second inflation) we need $14p \simeq 50$, eg. p = 4. (Unless $n - 1 \simeq 2\eta_{\sigma}$.)

More predictions

1. TENSOR FRACTION We're assuming ζ_{ϕ} negligible:

 $s \equiv \mathcal{P}_{\zeta_{\phi}}/\mathcal{P}_{\zeta} \ll 1$

Hence tensor fraction is

 $r = 16s\epsilon = 8s(1-n) \simeq 0.24s \ll 0.24$

Won't be seen by PLANCK, maybe never seen.

More predictions

1. TENSOR FRACTION We're assuming ζ_{ϕ} negligible:

 $s \equiv \mathcal{P}_{\zeta_{\phi}}/\mathcal{P}_{\zeta} \ll 1$

Hence tensor fraction is

 $r = 16s\epsilon = 8s(1-n) \simeq 0.24s \ll 0.24$

Won't be seen by PLANCK, maybe never seen.

2. LOCAL NON-GAUSSIANITY

Our calculation gives $f_{\rm NL} \sim -1$ which would eventually be seen. But second order correction to $f_{\rm NL}$ will be ~ 1 .

Need 2nd order or δN to get accurate prediction for $f_{\rm NL}$.

Conclusion

I like this model a lot.

Conclusion

I like this model a lot.

Simple assumptions, astonishingly powerful predictions.

I like this model a lot.

Simple assumptions, astonishingly powerful predictions.

Observation of pure monodromy tensor fraction $r \simeq 0.08$ will rule out the model. (And confirm pure monodromy if also $n-1 \simeq -0.020$.) So will observation of any bigger tensor fraction.

I like this model a lot.

Simple assumptions, astonishingly powerful predictions.

Observation of pure monodromy tensor fraction $r \simeq 0.08$ will rule out the model. (And confirm pure monodromy if also $n-1 \simeq -0.020$.) So will observation of any bigger tensor fraction.

Model's also ruled out if LHC fails to find susy or shows that susy breaking isn't anomaly-mediated.

I like this model a lot.

Simple assumptions, astonishingly powerful predictions.

Observation of pure monodromy tensor fraction $r \simeq 0.08$ will rule out the model. (And confirm pure monodromy if also $n-1 \simeq -0.020$.) So will observation of any bigger tensor fraction.

Model's also ruled out if LHC fails to find susy or shows that susy breaking isn't anomaly-mediated.

OTHERWISE IT'S IN GREAT SHAPE FOR MANY YEARS — TILL n' IS MEASURED.