Implications of LHC Higgs and SUSY searches for MSSM

Nazila Mahmoudi CERN TH & LPC Clermont-Ferrand

In collaboration with A. Arbey, M. Battaglia & A. Djouadi

Planck 2012, 28 May - 1 June 2012, Warsaw

Introduction	Constrained MSSM	pMSSM	Conclusion
0000			
SUSY searches			

Search for SUSY is the main focus of BSM searches in both ATLAS and CMS!

Before the start of the LHC: high expectation for an early discovery of SUSY particles

O. Buchmueller et al., JHEP 0809 (2008) 117

SUSY could be discovered even before the Higgs!

Introd	uction
0000	

Constrained MSSM

pMSSM

Conclusion

SUSY searches

With $\sim 1 \text{ fb}^{-1}$ of data:

With $\sim 5 \text{ fb}^{-1}$ of data:

CMS-PAS-SUS-12-005

Introduction	Constrained MSSM	PMSSM	Conclusion
0000			
Interpretation of S	JSY limits		

Two categories of studies:

- Constrained SUSY scenarios: CMSSM, mSUGRA, AMSB, GMSB, CNMSSM,... handful number of free parameters, useful for benchmarking,...
 - \rightarrow Most of the experimental limits are given for constrained MSSM scenarios
- General SUSY scenarios: pMSSM much richer features, signatures and phenomenology!

Limits are pushed higher and higher But still a lot of solutions compatible with all present bounds! \rightarrow Not possible to falsify MSSM!

Alternative path to tightly constrain and test the MSSM at the LHC: through the Higgs sector!

Introduction	Constrained MSSM	pMSSM	Conclusion
0000			
Higgs searches			

ATLAS and CMS excess around 125 GeV

ATLAS-CONF-2012-019, CMS-PAS-HIG-12-008

Excess around 125 GeV seen by both ATLAS and CMS in different channels No evidence however...

ATLAS exclusion at 95% C.L.: 110–117.5 ; 118.5–122.5 ; 129–539 GeV CMS exclusion at 95% C.L.: 127.5–600 GeV

Allowed range is roughly $117.5 < M_h < 118.5$ and $122.5 < M_h < 127.5$ GeV!

If the excess will be confirmed by more data, what are the consequences?

- In the SM, the Higgs mass is essentially a free parameter
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: $M_h^{max} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 135 \text{ GeV}$
- Imposing M_h places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

 \rightarrow Calculation of M_h^{max} in different constrained scenarios

Introduction	Constrained MSSM	PMSSM
	00000	
C	- 10F Call Illing on anothering	

Consequences of a 125 GeV Higgs on constrained MSSM scenarios

$$M_h^2 \overset{M_A \gg M_Z}{\approx} M_Z^2 \cos^2 2\beta + \frac{3m_t^4}{2\pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right]$$

- Important parameters for MSSM Higgs mass:
 - $\tan\beta$ and M_A
 - the SUSY breaking scale $M_{S}=\sqrt{m_{ ilde{t}_{1}}m_{ ilde{t}_{2}}}$
 - the mixing parameter in the stop sector $X_t = A_t \mu \cot eta$
- M_h^{max} is obtained for:
 - a decoupling regime with a heavy pseudoscalar Higgs boson, $M_A \sim \mathcal{O}(\text{TeV})$
 - large tan $\beta,~i.e.~\tan\beta\gtrsim10$
 - heavy stops, *i.e.* large M_S
 - maximal mixing scenario, *i.e.* $X_t = \sqrt{6}M_S$
- In contrast, much smaller M_h^{max} values for the no-mixing scenario, *i.e.* $X_t \approx 0$.

Introduction	Constrained MSSM	pMSSM	Conclusion
	00000		
Consequences of a 125 G	eV Higgs on constrained MSSM	1 scenarios	

Maximal Higgs mass

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

model	AMSB	GMSB	mSUGRA	no-scale	cNMSSM	VCMSSM	NUHM
$M_h^{\rm max}$	121.0	121.5	128.0	123.0	123.5	124.5	128.5
	F	nd of AM	ASB and CM	SR in their	minimal vers	ionsl	

Introduction	Constrained MSSM	pMSSM	Conclusion
	00000		
Consequences of	a 125 GeV Higgs on constraine	d MSSM scenarios	

Higgs mass between 123 and 127 GeV in the CMSSM

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

mSUGRA/CMSSM still survives, but only for negative values of A_0

Introduction	Constrained MSSM	PMSSM	Conclusi
	00000		
Consequences of a	125 GeV Higgs on high scale	SUSY scenarios	

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

Very strong constraints on Split-SUSY and High-scale SUSY

on

Constrained MSSM

pMSSM ●000000000000

Going beyond constrained scenarios

Constrained MSSM

- Handful of free parameters, simple framework,...
- Useful for benchmarking, model discrimination,...
- However the mass patterns could be more complicated
- How do the conclusions change when moving to the MSSM?

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

ightarrow 19 free parameters

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

Interplay between low energy observables, relic density, direct dark matter searches and the LHC

Pioneering work: C.F. Berger et al., JHEP 0902 (2009) 023

Going beyond constrained scenarios

Constrained MSSM

- Handful of free parameters, simple framework,...
- Useful for benchmarking, model discrimination,...
- However the mass patterns could be more complicated
- How do the conclusions change when moving to the MSSM?

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

\rightarrow 19 free parameters

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

Interplay between low energy observables, relic density, direct dark matter searches and the LHC

Pioneering work: C.F. Berger et al., JHEP 0902 (2009) 023

Introd	uction
0000	

Constrained MSSM

pMSSM ○●○○○○○○○○○○○

pMSSM

Flat scans over the pMSSM 19 parameters

Parameter	Range (in GeV)
aneta	[1, 60]
M _A	[50, 2000]
M ₁	[-2500, 2500]
M ₂	[-2500, 2500]
M3	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_{e} = A_{\mu} = A_{\tau}$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 2500]
M _{~~L}	[50, 2500]
M _Ť R	[50, 2500]
$M_{\tilde{q}_{1L}} = M_{\tilde{q}_{2L}}$	[50, 2500]
M _{ĝal}	[50, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[50, 2500]
M _ĩ	[50, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 2500]
M _Ē R	[50, 2500]

- Spectrum generation (SoftSusy, Suspect)
- Low energy observables (SuperIso)
- Dark matter (SuperIso Relic, Micromegas)
- SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Higgs and SUSY decays (HDECAY, Higlu, FeynHiggs, SDECAY)
- Event generation and cross sections (PYTHIA, Prospino)
- Detector simulation (Delphes)

$2.16 imes10^{-4} < BR(B o X_s\gamma) < 4.93 imes10^{-4}$
$BR(B_s o \mu^+ \mu^-) < 1.26 imes 10^{-8}$
0.56 < R(B ightarrow au u) < 2.70
$4.7 imes 10^{-2} < {\sf BR}(D_s o au u) < 6.1 imes 10^{-2}$
$2.9 imes 10^{-3} < {\sf BR}(B o D^0 au u) < 14.2 imes 10^{-3}$
$0.985 < R_{\mu 23}(K o \mu u) < 1.013$
$-2.4 imes 10^{-9} < \delta a_{\mu} < 4.5 imes 10^{-9}$
$10^{-4} < \Omega_\chi h^2 < 0.135$
+ sparticle mass upper bounds
+ Higgs search limits

Introduction	Constrained MS	SSM pMSSM	Conclusion
		00000000000	
Consequences on sparticle	e masses		

Strongly Interacting Sparticle Spectra of Allowed pMSSM Points

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

For the gluino, LHC data can exclude more than 85% of the points up to a mass of 520 (700) GeV for 1 (15) $\rm fb^{-1}$

For the squarks, 85% of the points can be excluded up to mass values of 320 (510) GeV for 1 (15) $\rm fb^{-1}$

Similar results also by: S. Sekmen et al., JHEP 1202 (2012) 075

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences on sparticle masses			

Weakly Interacting Sparticle Spectra of Allowed pMSSM Points

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

The domain of SUSY weakly-interacting particle masses above 500 GeV is relatively unaffected by the present LHC data

Introduction	Constrained MSSM	pMSSM	Conclusion
		0000000000	
Consequences of a 125 G	eV Higgs		

With $M_h > 111 \text{ GeV}$

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion
		0000000000	
Consequences of a 125 G	eV Higgs		

With $M_h > 111$ GeV

With $123 < M_h < 127$ GeV

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences of a 125 C	GeV Higgs		

With $M_h > 111 \text{ GeV}$

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences of a 125 G	eV Higgs		

With $M_h > 111$ GeV

With $123 < M_h < 127$ GeV

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences of a	125 GeV Higgs		

With $M_h > 111 \text{ GeV}$

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences of a 125 G	eV Higgs		

With $M_h > 111 \text{ GeV}$

With $123 < M_h < 127$ GeV

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

A large part of the pMSSM still survives No mixing cases ($X_t \approx 0$) excluded for $M_S < 1$ TeV

Small stop masses still allowed

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of a	125 GeV Higgs on pMSSM		

Squeeze even more the parameter space by combining with:

- Direct $A \rightarrow \tau^+ \tau^-$ search
- Constraints from ${\sf BR}(B_s o \mu^+ \mu^-)$
- Dark matter direct detection constraints (XENON)

 $123 < M_h < 127 \,\,{\rm GeV}$

Introduction 0000	Constrained MSSM 00000	₽MSSM 00000000●0000	Conclusion O
Consequences of a 125 GeV Higgs on pMSSM			

Squeeze even more the parameter space by combining with:

- Direct $A \rightarrow \tau^+ \tau^-$ search
- Constraints from ${\sf BR}(B_s o \mu^+ \mu^-)$
- Dark matter direct detection constraints (XENON)

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of	a 125 GeV scalar		

In the **maximal mixing** scenario $(X_t = \sqrt{6}M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of	a 125 GeV scalar		

In the **maximal mixing** scenario $(X_t = \sqrt{6}M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of	a 125 GeV scalar		

In the **maximal mixing** scenario $(X_t = \sqrt{6}M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		00000000000	
Consequences of a 125 GeV scalar			

In the **typical mixing** scenario $(X_t = M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of	a 125 GeV scalar		

In the **typical mixing** scenario $(X_t = M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		000000000000	
Consequences of	a 125 GeV scalar		

In the **typical mixing** scenario $(X_t = M_S)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		0000000000	
Consequences of a 125 (GeV scalar		

In the **no mixing** scenario $(X_t = 0)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		0000000000	
Consequences of a 12	25 GeV scalar		

In the **no mixing** scenario $(X_t = 0)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
		0000000000	
Consequences of a	a 125 GeV scalar		

In the **no mixing** scenario $(X_t = 0)$:

F.M., arXiv:1205.3100 [hep-ph]

Cyan region: CMS limit from $A_0 \rightarrow \tau \tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and the recent LHCb limit on $B_s \rightarrow \mu\mu$

Introduction	Constrained MSSM	pMSSM	Conclusion
			•
Conclusion			

- There still exists plenty of room for SUSY!
- Current searches are not sensitive to small mass differences, compressed spectra, ...
- The Higgs sector can play an important role in constraining SUSY
- Several constrained MSSM scenarios can be ruled out by a Higgs discovery at 125 GeV
- The CMSSM still provides viable solutions with $A_0 < 0$
- General MSSM: A lot of viable model points survive, but combining with flavour and dark matter sector information, one can squeeze the parameter space

Introduction	Constrained MSSM	PMSSM	Conclusion
Backup			

Backup

Introduction	Constrained MSSM	pMSSM	Conclusion
Sensitivity to M_A from B	${\sf R}(B_s o \mu^+ \mu^-)$		

Considering 2 scenarios:

• Current bound from LHCb+CMS + estimated th syst:

 ${
m BR}(B_s o \mu^+ \mu^-) < 1.26 imes 10^{-8}$

• SM like branching ratio with estimated 20% total uncertainty

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

Light M_A strongly constrained!

Introduction	Constrained MSSM	pMSSM	Conclusion
Dark matter direct	detection		

Considering 2 scenarios:

- Current Xenon 100 limit
- Projected 2012 90% C.L. upper limit

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

Again light M_A strongly constrained!

Introduction	Constrained MSSM	PMSSM	Conclusion	
Higgs searches				

Direct searches for $A \rightarrow \tau \tau$

CMS-PAS-HIG-11-009

Allowed region of $(M_A, \tan \beta)$ from full pMSSM scans for 1.1 and 15 fb⁻¹ compared to published CMS expected limit

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

1906

 $\begin{array}{c} 0.008 & 0.0 \\ BR(h^0 \rightarrow \gamma \gamma) \end{array}$

0.05

0.3 0.4

0.5

 $\begin{array}{ccc} 0.8 & 0.9 & 1 \\ BR(h^0 \rightarrow W^*W^*) \end{array}$

0.2

0.05

0.002 0.004

Introduction	Constrained MSSM	pMSSM	Conclusion
In the case of no Higgs d			

Higgs rates could be suppressed wrt the SM

- Study $\sigma \times$ BR suppression within pMSSM for $\gamma \gamma$ and WW final states assuming $M_{\chi \mathbf{q}} > 46$ GeV

- Look at suppression factor vs M_A for all accepted pMSSM points compatible with 1 fb⁻¹ LHC data (\tilde{g}, \tilde{q} and BR($B_s \rightarrow \mu^+ \mu^-)$) and XENON 100 results

- projection for 2012 data assuming SM value for BR($B_s \rightarrow \mu^+ \mu^-$).

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906

A suppression of a factor of 2 will be still possible!

Introduction	Constrained MSSM	PMSSM	Conclusion
Consequences of a 125	GeV Higgs on constraine	d MSSM scenarios	

Maximal Higgs mass

F.M., arXiv:1205.3100 [hep-ph]

Introduction	Constrained MSSM	pMSSM	Conclusion		
Consequences of a 125 GeV Higgs					

With $M_h > 111 \text{ GeV}$

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847

Introduction	Constrained MSSM	pMSSM	Conclusion		
Consequences of a 125 GeV Higgs					

With $M_h > 111 \text{ GeV}$

With $123 < M_h < 127$ GeV

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847