

LHCb results and plans

Umberto Marconi, I.N.F.N. Bologna on behalf of the LHCb Collaboration Planck'12, Warsaw, May 2012

Strategy for NP search at LHCb

• Measure rare processes.

- Measure FCNC transitions, where New Physics is more likely to emerge, and compare results to SM predictions.
- Measure CP symmetry violation to improve measurement precision of CKM elements.
 - Extract CKM-UT angles and sides in many different ways: any inconsistency will be a sign of New Physics.
 - Compare measurements of same quantity, which may or may not be sensitive to NP: e. g. NP-free determinations of CKM-UT angle γ to be compared to γ from loop.

b and c hadrons production at LHC

The beauty cross-sections given by PYTHIA (PYTHIA8 and CTEQ6 NLO) are: 251.8 µb at 7 TeV; 291.6 µb at 8 TeV; 527.3 µb at 14 TeV. LHCb measurement in the acceptance, at 7 TeV: $\sigma(pp \rightarrow bbX) = (75.3 \pm 5.4 \pm 13.0) \mu b$, PLB 694 (2010) 209,

corresponding to $\sigma(pp \rightarrow bbX)_{4\pi} = 284 \pm 20 \pm 49 \mu b$.

 σ_{inel} = 60 mb and σ_{cc} = 6 mb.

 $1.8 < \eta < 4.9$ for LHCb

The LHCb detector

Trigger architecture

Running Conditions

Instantaneous luminosity leveling

Leveling is obtained through vertical beam displacements.

Recorded instantaneous luminosity

LHCb Peak Instantaneous Lumi at 3.5 TeV in 2011

LHCb luminosity per fill typically $3-4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

The average instantaneous <L> is a factor 2. above the design value !

2011 integrated luminosity of 1.1 fb⁻¹ $10^{15} \times 75.3 \times 10^{-6} \sim 10^{11}$ beauty.

Target of 1.5 fb⁻¹ recorded in 2012

6

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

The rarest B decay ever observed

- It is a b \rightarrow d $\mu^+\mu^-$ flavour changing neutral current process.
- $b \rightarrow d \mu^+\mu^-$ is suppressed by a factor $|V_{td}/V_{ts}|$ relative to $b \rightarrow s \mu^+\mu^-$: This suppression does not necessarily apply to NP beyond the SM.
- The predicted SM branching fraction B(B⁺→π⁺μ⁺μ⁻)_{SM} = (1.96±0.21)×10⁻⁸ Communications in Theoretical Physics 50 (2008) 696
- The best published limit is B(B⁺→π⁺μ⁺μ⁻) < 6.9×10⁻⁸ at 90% C.L. by Belle full dataset. Phys. Rev. D78 (2008) 011101, arXiv:0804.3656
- $21 \pm 3 B^+ \rightarrow \pi^+ \mu^+ \mu^-$ events expected in 1.0 fb⁻¹, given the SM prediction.
- A signal yield of 25.3 ^{+6.7}_{-6.4} is extracted from the fit, corresponding to a 5.2σ observation.
- The LHCb measurement: (2.4 ± 0.6 (stat) ± 0.2 (syst))×10⁻⁸ in good agreement with the SM.

$B_d \rightarrow K^*(K^+\pi^-)\mu^+\mu^-$ (1fb⁻¹)

κ⁻

θκ

- It is a b \rightarrow s $\mu^+\mu^-$ FCNC process, with a vector in the final state: a reach phenomenology.
- The decay can be described by three angles $(\theta_{I}, \theta_{K}, \varphi)$ and by the squared di-muon invariant mass (q²).
- Angular observables in this decay have been previously measured by BaBar, Belle, CDF.
- The LHCb fit of the differential amplitude, in the angles and in bins of q², allow to access:
- F_L , the longitudinal polarization of the K*
- A_{FB} of the leptonic system
- T-odd CP A_{IM} asymmetry
- The transverse asymmetry $S_3 = 0.5 \times (1-F_L) \times A_T^2$

 $rac{1}{4}(1-F_L)(1-\cos^2 heta_K)(2\cos^2 heta_\ell-1) +$

 $S_3(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos 2\hat{\phi} +$

 $A_{Im}(1-\cos^2 heta_K)(1-\cos^2 heta_\ell)\sin 2\hat{\phi}$

 $rac{4}{2}A_{FB}(1-\cos^2 heta_K)\cos heta_\ell +$

w-f

u/c/t

 \overline{K}^{*0}

$B_d \rightarrow K^*(K^+\pi^-)\mu^+\mu^-$ signal selection

The $K^+\pi^-\mu^+\mu^-$ versus $\mu^+\mu^-$ invariant mass distribution for candidates in the data sample.

The red lines limit the cc-bar resonance regions that are removed in the analysis. The black lines indicate a $\pm 50 \text{MeV/c}^2$ window around the reconstructed B_d mass.

$q^2 \; ({ m GeV}^2/c^4) \; { m range}$	Signal Yield	Background Yield
$4m_{\mu}^2 < q^2 < 2.00$	162.4 ± 14.2	27.7 ± 3.8
$2.00 < q^2 < 4.30$	71.4 ± 10.7	37.1 ± 4.1
$4.30 < q^2 < 8.68$	270.5 ± 18.8	58.8 ± 5.5
$10.09 < q^2 < 12.90$	167.0 ± 14.9	41.7 ± 4.5
$14.18 < q^2 < 16.00$	113.0 ± 11.7	17.1 ± 3.0
$16.00 < q^2 < 19.00$	115.0 ± 12.4	23.9 ± 3.6
$1.00 < q^2 < 6.00$	195.2 ± 16.9	75.8 ± 6.0
$4m_{\mu}^2 < q^2 < 19.00$	900.0 ± 34.4	206.2 ± 10.3

The signal and background yields resulting from a fit to the $K^+\pi^-\mu^+\mu^-$ invariant mass distributions of the candidates in the six q²-bins used in the analysis.

The BDT selection uses information about the kinematic properties of B⁰ meson, B⁰ vertex quality, track quality, impact parameter and Particle Identification (PID) of the kaon, the pion and the muons.

$B_d \rightarrow K^*(K^+\pi^-)\mu^+\mu^-$ results

A_{FB} zero crossing point $B_d \rightarrow K^*(K^+\pi^{-)}\mu^+\mu^-$

Results are in good agreement with Standard Model predictions.

$\mathsf{B}_{(s)} \rightarrow \mu^{+}\mu^{-} \text{(1fb}^{-1}\text{)}$

- Very rare in Standard Model, due to the absence of tree-level FCNC, helicity suppression, CKM suppression:
- $BR_{SM} (B_S \rightarrow \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$
- $BR_{SM} (B_d \rightarrow \mu^+ \mu^-) = (0.10 \pm 0.01) \times 10^{-9}$ Buras et al., JHEP 10 (2010) 009 E.Gamiz et al. Phys. Rev. D 80 (2009) 104503

- The SM BRs can be enhanced in NP models.
- $B_{(s)} \rightarrow \mu^+ \mu^-$ decays are relatively easy to trigger and reconstruct. The main issue for the analysis is the background rejection.
- Classification of events in 2D space: Invariant di-muon mass of high quality muon tracks and Boosted Decision Tree (BDT) multivariate discriminant on kinematics and topology variables.
- Control channels used for the expectation for signal and background.

Di-muon invariant mass

BDT selection

BDT trained using MC simulated samples of $B_s \rightarrow \mu^+\mu^-$ and $bb \rightarrow \mu^+\mu^- X$ background. Signal distribution taken from data using $B_{(s)} \rightarrow h^+h'^-$. Background distribution from the sidebands of the $\mu\mu$ invariant mass distribution in the $B_{(s)}$ mass window.

$B_s \rightarrow \mu^+ \mu^-$ candidate ?

$$\begin{split} m(\mu^+\mu^-) &= 5.374 \; GeV/c^2 \\ p_T(\mu^+) &= 2.3 \; GeV/c \\ p_T(\mu^-) &= 3.5 \; GeV/c \end{split}$$

BDT = 0.92 Decay length = 11.5 mm Proper time = 3.5 ps

 $B_{(s)} \rightarrow \mu^+ \mu^-$

LHCb-PAPER-2012-007 arXiv:1203.4493

Branching fraction normalization:

16

 $B_{(s)} \rightarrow \mu^+ \mu^-$ implications

Complementarity of direct and indirect searches

$B_{(s)} \rightarrow \mu^+ \mu^-$ implications

Minimal Supersymmetric Standard Model for BR($B_d \rightarrow \mu^+ \mu^-)/BR(B_s \rightarrow \mu^+ \mu^-)$

David Straub, Rencontres de Moriond EW, La Thuile (2012)

Mixing-induced CPV in $B_s \rightarrow J/\psi \phi$

- $B_S \rightarrow J/\psi \phi$ is the counterpart of $B^0 \rightarrow J/\psi K^0$
- We aim to measure ϕ_s : the phase difference between the $B_s \rightarrow J/\psi \phi$ decay amplitudes with or without oscillation.
- ϕ_s possibly sensitive to New Physics contributions to B_s mixing: $\phi_s = (\phi_s)_{SM} + (\phi_s)_{NP}$

$$(\phi)_{SM} = -2 \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -0.036 \pm 0.002$$

 Important differences between B_s and B⁰ cases: ΔM_s >> ΔM_d : excellent proper time resolution to resolve oscillations. ΔΓs >> ΔΓd: access to cos(φ_s) in addition to sin(φ_s) B_s → J/ψ KK final state is a mixture of CP-even and CP-odd eigenstates, with 4 contributing amplitudes: KK in P-wave state: final state is CP-odd or CP-even KK in S-wave state: final state is CP-odd

$B_s \rightarrow J/\psi \phi$ signals and resolutions

- $B_s \rightarrow J/\psi \phi$ candidates:
- Require t > 0.3 ps
- 8 MeV/c² mass resolution.
- 21200 signal events (1 fb⁻¹).

Time resolution

- Apply selection without decay length or impact parameter cuts (trigger + offline)
- Calibrate per-event estimate of proper time error from fit to prompt peak.
- 45 fs time resolution.

$B_s \rightarrow J/\psi \varphi$ decay rates

10 parameters: $\phi_{s_{,}}\Gamma_{s}$, $\Delta\Gamma_{s}$, $\Delta M_{s_{,}}$ 3 amplitudes and 3 strong phases

$B_S \rightarrow J/\psi\phi$ fits (1.0 fb⁻¹)

LHCb-CONF-2012-002

CPV in $B_s \rightarrow J/\psi \varphi$

LHCb-CONF-2012-002

Fit of the tagged and the untagged rates as a function of B_s mass, proper time and angles.

CPV in $B_S \rightarrow J/\psi \varphi$

Just for illustration purposes ...

Charmless two bodies b-hadron decays

- Decay amplitudes from tree and penguin diagrams.
- Tree-penguin interference allows to look for direct CPV.
- Sensitive to V_{ub} so to the CKM-UT angle γ .
- New Physics possibly contributes to penguin loops.

Direct CPV in $B^0 \rightarrow K\pi$ (0.32 fb⁻¹)

arXiv:1202.6251 (accepted by PRL) 13250 ± 150 B⁰ \rightarrow K π

$\int \operatorname{in} B_{S}$ $\int \operatorname{ted} \operatorname{by} \operatorname{PRL} \qquad 314 \pm 27 \operatorname{B}_{S} \xrightarrow{} \operatorname{in} \operatorname{LHCb}$ $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$ $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$ Direct CPV in $B_{\varsigma} \rightarrow \pi K$ (0.32 fb⁻¹) arXiv:1202.6251 (accepted by PRL) **400** Events / (0.02 GeV/c²) **LHCb** 350 $B^0 \rightarrow K\pi$ $B_s^0 \rightarrow K\pi$ 300 $B^0 \rightarrow \pi\pi$ 250 B⁰_s→KK 200 B→3-body 150 🛄 Comb. bkg 100 50 50 0₅ 05 5.2 5.2 5.4 5.6 5.4 5.6 5.8 5.8 $K^{\dagger}\pi^{-}$ invariant mass (GeV/c²) $K^{-}\pi^{+}$ invariant mass (GeV/c²) $A_{CP}(B_s^0 \to K\pi) = 0.27 \pm 0.08 \,(\text{stat}) \pm 0.02 \,(\text{syst})$ First evidence of CP violation in B_s decays (3.3σ) $A_{CP}(B_s \rightarrow \pi K) = 0.39 \pm 0.15 \pm 0.08$ CDF [Phys. Rev. Lett. 106 (2011) 181802]

 $A_{CP}(B_s \rightarrow \pi K) \approx A_{dir}^{\pi\pi} = \begin{cases} 0.25 \pm 0.08 \pm 0.02 \text{ BaBar } [arXiv:0807.4226] \\ 0.55 \pm 0.08 \pm 0.05 \text{ Belle } [PRL 98 (2007) 211801] \\ 29 \end{cases}$

Annihilation topologies in $B \rightarrow h^+h'^-$

30

Time-dependent CPV B $\rightarrow \pi^+\pi^-$ (0.69 fb⁻¹)

γ measurements

 γ_{Comb} is the combination of the available results including all the data available after Moriond 2012 (thus with updates of LHCb analyses to 1 fb⁻¹).

 γ_{SM} is the fit prediction from the SM using post LP11 results.

 $\gamma_{comb} = (75.5 \pm 10.5)^{\circ}$ $\gamma_{SM} = (68.5 \pm 3.2)^{\circ}$

γ from B \rightarrow DK

- γ plays a unique role in flavour physics: It is the only CP violating parameter that can be measured through tree decays.
- It is a benchmark Standard Model reference point.

Variants use different B or D decays and require a final state common to both D⁰ and D⁰-bar

Latest results on $B \rightarrow D(\pi K)K$ (ADS)

LHCb arXiv:1203.3662 Submitted to PLB

36

Evidence of CPV in charm

Measurement of CP asymmetry at pp collider requires knowledge of production and detection asymmetries; e.g. for $D^0 \rightarrow f$, where D meson flavour is tagged by $D^{*+} \rightarrow D^0 \pi^+$ decay

$$A_{\rm raw}(f) = A_{CP}(f) + A_{\rm D}(f) + A_{\rm D}(\pi_{\rm s}^+) + A_{\rm P}(D^{*+}).$$

Final state detection asymmetry $A_D(f)$ vanishes for CP eigenstate

Cancel asymmetries by taking difference of raw asymmetries in two different final states. (V - V +)

$$\Delta A_{CP} = A_{\rm raw} (K^- K^+) - A_{\rm raw} (\pi^- \pi^+).$$

Evidence of CPV in charm

Result, based on 0.62/fb of 2011 data $\Delta A_{CP} = [-0.82 \pm 0.21(stat.) \pm 0.11(syst.)]\%$

 ΔA_{CP} related mainly to direct CP violation: The contribution from indirect CPV suppressed by difference in mean decay time.

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) = \left[a_{CP}^{\text{dir}}(K^{-}K^{+}) - a_{CP}^{\text{dir}}(\pi^{-}\pi^{+}) \right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}.$$

Evidence for CPV in charm

- Implications of the LHCb Evidence for Charm CP Violation. arXiv:1111.4987
- Direct CP violation in two-body hadronic charmed meson decays. arXiv: 1201.0785
- CP asymmetries in singly-Cabibbo-suppressed D decays to two pseudoscalar mesons. arXiv:1201.2351
- Direct CP violation in charm and flavor mixing beyond the SM. arXiv:1201.6204
- New Physics Models of Direct CP Violation in Charm Decays. arXiv:1202.2866
- Repercussions of Flavour Symmetry Breaking on CP Violation in D-Meson Decays. arXiv:1202.3795
- On the Universality of CP Violation in Delta F = 1 Processes. arXiv:1202.5038
- The Standard Model confronts CP violation in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$. arXiv:1203.3131
- A consistent picture for large penguins in $D^0 \rightarrow \pi^+\pi^-$, K^+K^- . arXiv:1203.6659
- ...
- ... and many others!
 Further experimental input needed to clarify whether CPV is SM or NP

LHCb upgrade

- Run at a nominal luminosity of: L=1. \times 10³³ cm⁻²s⁻¹
- Exploit a fully flexible HLT (software trigger), selecting events synchronously with the BX clock, at 40 MHz.
 - Increase signal efficiency for leptonic channels by a factor 5 and for hadronic channels up to a factor 10.
- Accumulate 50 fb⁻¹ over 10 years starting from 2018
- For reasons of flexibility and to allow for possible evolutions of the trigger, LHCb decided to design those detectors that need replacement for the upgrade such that they can sustain a minimal luminosity of L=2.×10³³ cm⁻² s⁻¹.

LHCb sensitivity to key channels

CERN/LHCC 2012-007, LHCb TDR 12, 25 May 2012

5 fb⁻¹

50 fb⁻¹

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	$0.6 imes 10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma)$	_	0.13%	0.03%	0.02%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	8%	2.5%	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8 %	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	$0.3 imes 10^{-9}$
$\operatorname{penguin}$	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 20^{\circ} \ [19]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	_
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_

Summary

- Concept of LHCb definitely proved.
 - Dedicated experiment for heavy flavour physics exploiting a forward spectrometer at a hadron collider.
- Many world leading results already with 2011 data and many more to come.
 - Significant increase in available samples with 2012 data.
- Standard Model still survives.
 - Now on probing regions where new physics effects might appear.
- LHCb plan the upgrade to be installed in 2018.
 - Essential next step forward for flavour physics.

Spares

Mixing-induced CPV in $B_S \rightarrow J/\psi \phi$

The interfering amplitudes

Tagging

- Tag the initial B_s flavour state with the other b-hadron.
- Electron, muon, kaon, or inclusively reconstructed vertex.
- Per-event mistag-probability from neural network trained on MC.
- Calibration of the per-event mistag probability using flavour specific decays similar to $B_S \rightarrow J/\psi \phi$

Tagging power for $B_s \rightarrow J/\psi \varphi$: $\epsilon D^2 = (2.29 \pm 0.07 \pm 0.26)\%$ To be added yet: "same-side" tagging, using charged kaon produced in association with B_s .

Same side tagging and ΔM_s

- ΔM_s analysis done with $B_s \rightarrow D_s^-$ (K⁻K⁺ π^-) π^+
- Same Side Kaon Tagging global calibration tested with D_s^- decays: $\epsilon D^2 = (1.3 \pm 0.4)\%$
- For the future: optimization and per-event calibration with ΔMs oscillations.
- Opposite Side Tagging per event calibration done with $B^0 \rightarrow D^- \pi^+$, ΔM_d oscillation: $\epsilon D^2 = (3.1 \pm 0.8)\%$
- $\Delta M_s = (17.725 \pm 0.041 \pm 0.026) \text{ ps}^{-1} \text{ using a combination of the opposite-side and same-side tagging algorithms.}$

LHCb-CONF-2011-050

LHCb performance in 2011

2012 data taking (so far)

LHCb Integrated Luminosity at 4 TeV in 2012

The present LO trigger architecture

1 MHz L0 trigger rate limitation

LLT efficiency vs LLT output rate

Relative rates LLT- μ : LLT-hadron: LLT-e/ γ = 1:3:1.

Trigger: the key to higher luminosity

Detector modifications

