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News on neutrino mixings

Impact on neutrino flavour models (much more in Feruglio’s talk on Friday]

Implications for LFV transitions in supersymmetric models:

without RH neutrinos

\-®

¢ with RH neutrinos

Correlation with the muon g-2 discrepancy

based on: Altarelli, Feruglio, LM & Stamou, arXiv:1205.4670
Altarelli, Feruglio & LM, arXiv:1205.5133
Bazzocchi & LM, arXiv:1205.5135
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Recent Results of Global Fits
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Very recent global fit: Fogli et al. 1205.5254 (see also [Forero, Tortola and Valle 1205.4018] )
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http://arxiv.org/abs/1205.4018
http://arxiv.org/abs/1205.4018
http://arxiv.org/abs/1205.5254
http://arxiv.org/abs/1205.5254

Neutrino Mass Patterns

In the past: . 9 1
S1Il 923 = — ]
& large atmospheric angle — 2 mu-tau
symmetry
2 only upper bound on the reactor angle sin2 615 = 0
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Neutrino Mass Patterns

In the past: s 2 — 1
. Sin” Oz = 5 mu-tau
© large atmospheric angle e
symmetry
© only upper bound on the reactor angle sin2 613 =0
30 lo 3o
L [ | ' [ | [ |
: .2 2 v '1
0 sin” 012 5+v5 3 2
GR B
TRI'BIMAXIMAL (TB) [Harrison, Perkins & Scott 2002; Zhi-Zhong Xing 2002]
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SiIl2 (923 = 5 SiIl2 913 =0 Sin2 (912 = § —_— 912 = 35.26°
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Neutrino Mass Patterns

In the past: .2 _ 1
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Neutrino Mass Patterns

30 lo 3o
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L [ | ! [ | [ ]
) . 9 > v !
0 sin” 012 5+5 3 2
GR TB BM

BIMAXIMAL (BM) [Vissani 1997; Barger et al. 1998]

1 1
sin? Oy = 5 sin?f13 =0 sin®fp = = —>
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Neutrino Mass Patterns

! — — !
0 sin” 012 5+v5 3 2
GR B BM

BIMAXIMAL (BM) [Vissani 1997; Barger et al. 1998]

1 o
Sin2 923 = 5 Sil’l2 913 =0 sin2 (912 = 5 —_— 912 = 45

Maybe related to the

Quark-Lepton Complementarity:
[Smirnov; Raidal; Minakata & Smirnov 2004]

7'('/4%(9124—)\

—_ (9{32:1:19 ~ QgM —\ [Altarelli, Feruglio and LM 2009,
Adelhart, Bazzocchi and LM 2010,
Meloni 2011]
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Need of Corrections!!

sin® 03 = 0.024570 0057 [0.0246 700051
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Need of Corrections!!

sin® 03 = 0.024570 0057 [0.0246 700051
30 lo 30

|
) N _/ : 0.05
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A2 sin” 6
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Such corrections can arise from the charged lepton and/or from the neutrino sectors:

Me = méo) + 0me, m, = m,(,o) + dm,,
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Need of Corrections!!

sin® 03 = 0.024570 0057 [0.0246 700051
30 lo 30

|
) N _/ : 0.05
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A2 sin?
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GR 2

Such corrections can arise from the charged lepton and/or from the neutrino sectors:

Me = méo) + 0me, m, = m,(,o) + dm,,

in the basis in which the LO masses satisfy to

mceliag _ méO) dzag UOT (0) UB US _ {UTBa UG’R, UBM}
then the NLO corrections are encoded in
(md@9)% = sUT m! m, 60U, 1 c12§ 13§
‘ (5U = —CT2 € 1 C23 S
md9 = sUT U9 m,, U° 5U, —C13§ —c3f 1
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Type of Models

[much more in Feruglio’s talk on Friday]

@ In typical TB (GR) models, the corrections are democratic in all the angles:
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A4: Altarelli & Feruglio 2005; T’: Feruglio, Hagedorn, LM & Lin 2007; Sa: Bazzocchi, LM & Morisi 2009
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Type of Models

[much more in Feruglio’s talk on Friday]

@ In typical TB (GR) models, the corrections are democratic in all the angles:
e =¢ Cla R C33 & Clg £ ~0.075
iy = chy ~ Yy SR~ 12%

A4: Altarelli & Feruglio 2005; T’: Feruglio, Hagedorn, LM & Lin 2007; Sa: Bazzocchi, LM & Morisi 2009

@ In special TB models, the corrections are specific in certain flavour directions:
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Ag: Lin 2009
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[much more in Feruglio’s talk on Friday]
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@ In special TB models, the corrections are specific in certain flavour directions:
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Type of Models

[much more in Feruglio’s talk on Friday]

@ In typical TB (GR) models, the corrections are democratic in all the angles:

o clo R Coq R €3 ¢ ~0.075
e =¢

|/ VN 7.

A4: Altarelli & Feruglio 2005; T’: Feruglio, Hagedorn, LM & Lin 2007; Sa: Bazzocchi, LM & Morisi 2009

@ In special TB models, the corrections are specific in certain flavour directions:
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& >¢ —_—
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Q

As: Lin 2009

@ Also in BM models, the corrections are specific in certain flavour directions:
e e e __
C19, €13 7 0 Co3 =10
V o V ~ LV
C12 ~ C23 ~ (13
S4: Altarelli, Feruglio and LM 2009; Adelhart, Bazzocchi and LM 2010
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Type of Models

@

[much more in Feruglio’s talk on Friday]

In typical TB (GR) models, the corrections are democratic in all the angles:
(& e (&
Cio R Coq X C ~
cmese IO o

A4: Altarelli & Feruglio 2005; T’: Feruglio, Hagedorn, LM & Lin 2007; Sa: Bazzocchi, LM & Morisi 2009

In special TB models, the corrections are specific in certain flavour directions:

iy =Cy3 =0 iz # 0 £ ~0.18
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Ag: Lin 2009
Also in BM models, the corrections are specific in certain flavour directions:
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S4: Altarelli, Feruglio and LM 2009; Adelhart, Bazzocchi and LM 2010
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Q Which is the meaning of & ?

) 1
¥ How can we achieve these flavour structures?



Basic Points on Model Building
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Basic Points on Model Building

Y  Flavour Symmetries to introduce these flavour structures
Y  Flavour Symmetries cannot be exact: the Yukawas do not show any symmetry
Q  Starting from a Yukawa Lagrangian invariant under a Flavour Symmetry, masses and

mixings arise only through a symmetry breaking mechanism:

Ly — (Ye[Spn])z‘j .. gt 0+ (Y,,[gpm])ij (¢; I;T*)(I;TT ;)

A7 AT 2A 1,

where @ are new heavy scalar fields, singlets under SM, called flavons
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Basic Points on Model Building

Y  Flavour Symmetries to introduce these flavour structures
Y  Flavour Symmetries cannot be exact: the Yukawas do not show any symmetry
Q  Starting from a Yukawa Lagrangian invariant under a Flavour Symmetry, masses and

mixings arise only through a symmetry breaking mechanism:

(Yele™);; (Yo le™])is (0 H*)(HT ;)
— 1 CH'I‘ ) (%] 1 J

where @ are new heavy scalar fields, singlets under SM, called flavons

Q@  Suitable Spontaneous Symmetry Breaking ¢ — <90>

© At LO the PMNS can take one of the previous predictive patterns
Q At NLO, some corrections arise and they are proportional to the VEV of the flavons:

larger is the VEV and larger are the corrections
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Are there consequences of so large & ?
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Impact on LFV

Low Energy Q@ (g-2), discrepancy Q GUTs
Observables: ©Q dark matter @ flavour symmetries
9 V masses @ gauge coupling unification Q@ v
¢ v oscillations © hierarchy problem @ superheavy gauge bosons
| | | L 1 1| R
0 ew.scale msusy ~ (1+10) TeV (©) Mer Ay Asysy Energy

The Flavour symmetry at the high-scale affects the low-energy observables indirectly:
Q the flavons ¥ do not lead to direct contributions (suppressed by the heavy mass)

Q the soft-SUSY breaking parameters are governed by the flavour symmetry and its

breaking mechanism

Luca Merlo, Discrete Flavour Groups, Neutrino Reactor Angle and LFV 11



Impact on LFV

Low Energy Q@ (g-2), discrepancy Q GUTs
Observables: ©Q dark matter @ flavour symmetries
9 V masses @ gauge coupling unification Q@ v
¢ v oscillations © hierarchy problem @ superheavy gauge bosons
| | | L 1 1| R
0 ew.scale msusy ~ (1+10) TeV (©) Mer Ay Asysy Energy

The Flavour symmetry at the high-scale affects the low-energy observables indirectly:
Q the flavons ¥ do not lead to direct contributions (suppressed by the heavy mass)

Q the soft-SUSY breaking parameters are governed by the flavour symmetry and its

breaking mechanism

—3 non-universal boundary conditions for the soft terms

-3 different results wrt CMSSM scenario
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BR(p — ev)

We focus on the radiative decay p — e7y:

BR(p — ey) <24 x 107 @95% C.L.
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BR(p — ev)

We focus on the radiative decay p — e :
BR(p — ey) <24 x 107 @95% C.L.

The normalized BR is defined by:

A8 73 oy 12 12
R" — em ‘A’L] ‘A’Lj
Y GEmgysy [ | T2k
ij mgsusy
A} =arp (0i5)pp + are—— (8ij) g,
7
ij msusy
Ap =agrr (0ij) pp + aLr——— (0i5) 1 5

(

12
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BR(p — ev)

We focus on the radiative decay p — e :
BR(p — ey) <24 x 107 @95% C.L.

The normalized BR is defined by:

A873 (v, 2 2
R = ”A’Lg + ‘A}fg ]
GEmey sy
ij msuvsy
A} =arp (0i5)pp + are—— (8ij) g,
(2
ij msuvsy
Af = arr (0i) gr + aLr——— (0i) g
1
The acc’ are loop factors of the SUSY parameters:
arr = {27 27}
tan 8 = {2,25} arr = {—1.9,—-0.6}
Arr, — ar, R — 0.3
12
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The (5ij)CC’ depend on the soft parameters:

B (m%’C/)ij

(déj )CC —
/ mQSUSY



The (5ij)CC’ depend on the soft parameters:

B (mQC'C’>ij

(9ij) cer =
/ mQSUSY

where the soft masses are defined by

—L, D (E e

2 2
~c) Merr  MeLR <



The (5ij)CC’ depend on the soft parameters:

2
m ..
Msuysy

where the soft masses are defined by

2 2

2 2 .

_ m m é ~

= LL LR = .

—Ln D (6 &) : : ( —c ) +Umi, D
Merr  "eRR

€D

2 . . . .
v ML and ngR are hermitian matrices from the Kahler potential

O 2 t

2 .
Y MeLR — (meRL) from the superpotential

generated from the SUSY Lagrangian analytically continuing all the couplings
constants into superspace:

Lo / 20207 — / 2040 (1 + kmd 6°0%) it

ED/d29yeeC€hd—>/d29 (ye+xem092) el hy



The flavour is encoded into the soft masses:



The flavour is encoded into the soft masses:

An

LD /d29 d*6 (1 + kmg 6°6%) (wwﬂ’)
f

— Non-canonical kinetic terms

L 0" 0E")
—> (Ml )k = ( OE") 1 o) )m(Z)
oE") o) 1



The flavour is encoded into the soft masses:

LD /d29 d*6 (1 + kmg 6°6%) (wwzfﬂ)
f

— Non-canonical kinetic terms

L 0" 0E")
—> (Ml )k = ( OE") 1 o) )m(Z)
oE") o) 1

LD /d29 (Ye + Ae mo8?),. €5 ; ha

Ye ye O(E")  y. O(&")
—_— Y. = ( Y O(E") Yu Y O(E") )
Yr O(ﬁn) Yr O(gn) Yr

Ye ye O(E")  y. O(E")
—_— mﬁRL = | . 0(") Yu yu OE") mo Vg
Yr O<€n) Yr O(gn) Yr

same flavour structure but different coefficients



& Typical TB (GR) models
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& Typical TB (GR) models

ASTS Qe 5
£ ~0.075 R = 2 larr +arc|” O (54)
— FMsusy
SR ~ 12% - N
° R,ue ~ RT@ ~ RT,LL
Q Special TB models
4813 e 9 y
£z/ ~ 0.18 Rz] — G2 4 |a’LL + aRL| O (g 4)
- — FMsusy

SR ~ 64% R/,Le ~ RTG ~ RTH



& Typical TB (GR) models

4873 e 2
¢ ~0.075 Rij = 5 larr + anrc|” O (&)
F'"SUSY
SR ~ 12% R,ue ~ RT@ ~ RT,LL
&) Special TB models
487T3Cl{em 2 v
¥ ~0.18 Rij = G2.mA arr +arp|” O (€7)
~ U. F'"'*SUSY
SR ~ 64% Rye = Rre = Ry,
& BM models
487-(-30467,” ) O (562) ’L] — 21, 31
. R;: = arr +a X
5 ~ 0.17 j G%,méUSY | LL RL‘ {O (664) Z] — 392

SR ~ 34% Rﬁbe ~ RTe > RT,LL



mo = 200 GeV & tan 8 = 15

BR(u — ey) < 2.4 x 107" P 1071 Typical TB
& 107°
—> M, 5 <400 GeV A 1o-10
Y ~ 156 GeV 5; 10-12
£ 2 306 GeV M 10-14
(R ~ [160,350] GeV 10-16L. 1 SERIN |
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With RH Neutrino

When RH neutrinos are present in the spectrum, their RGE are important:

1 A A -
(mgLL)ij = 872 (3 m(2) + A(2)> Z(Yj>zk log (E> (Yo )kj
k
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With RH Neutrino

When RH neutrinos are present in the spectrum, their RGE are important:

1 A .
(mgLL)ij = T gn2 (3mg + Ag) Z(Y )ik log (Mk> (Y0)kj
k

If the RH neutrinos transform as 3dim irreducible representations then

p(9) VIV, p(9)T =YY, = [p(g), YIV.] =0 =YY, o 1 = Y, is unitary
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With RH Neutrino

When RH neutrinos are present in the spectrum, their RGE are important:

1 -
(mzLL)ij == {2 (3 mO - A2> Z(YVT)'Lk log (E) (Yu)kj
k

If the RH neutrinos transform as 3dim irreducible representations then

p(9) VIV, p(9)T =YY, = [p(g), YIV.] =0 =YY, o 1 = Y, is unitary

Writing the usual type | See-Saw relation:

2
|k |202

diag

—_— Y, kU .. M~ = m?

k2
| | (3m0+A2) Uzzlog—U Uzglog— T

2 ~Y
—_— <m€LL)ij = 87T -

Very predictive relation: it only depends on the LO mixing pattern and neutrino spectrum
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(@)

TB pattern

Y GR pattern

(&)

(@)

BM pattern

3

1
2
(meLL),ue X 3 log

513 23 2

3
QN
)
h
SN——"
3
®
=
Lo = Wl
<)
(]

© TH 8 my 2 mi
Expressing all the neutrino masses in terms of the lightest
one, these quantities depend on only 1 parameter



S Typical TB

E

BR(p — ey) < 2.4 x 10712

da, = a? — ™ =302(88) x 107

tan 8 € (2, 15]
mo, My 5 € [200, 5000]GeV

.....

TR IR
wis - |Special TB

107® E
~
o -10
A 10
310712
M 1
0

10—14 ;

= (Y I s
107007107720 "730 40 50
e % )
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Concluding Remarks

© Discrete symmetries can accommodate neutrino mixing patterns
© Are TB, GR & BM the flavour structure of nature? or only

accidents?
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Concluding Remarks

- 4

& Discrete symmetries can accommodate neutrino mixing patterns

& Are TB, GR & BM the flavour structure of nature? or only
accidents?

© The new data on 6,5 have put severe doubts on their naturalness:
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& Are TB, GR & BM the flavour structure of nature? or only
accidents?
& The new data on 6;3 have put severe doubts on their naturalness:

- All the mixing patterns need large corrections
- The special TB (and BM) need dynamical tricks
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& The new data on 6;3 have put severe doubts on their naturalness:

- All the mixing patterns need large corrections
- The special TB (and BM) need dynamical tricks

- Possible alternatives? Anarchy?
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Concluding Remarks

=
=/

Discrete symmetries can accommodate neutrino mixing patterns

o J

& Are TB, GR & BM the flavour structure of nature? or only
accidents?

& The new data on 6;3 have put severe doubts on their naturalness:
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Discrete symmetries can accommodate neutrino mixing patterns

o J

& Are TB, GR & BM the flavour structure of nature? or only
accidents?

& The new data on 6;3 have put severe doubts on their naturalness:
- All the mixing patterns need large corrections
- The special TB (and BM) need dynamical tricks
- Possible alternatives? Anarchy?

& Model-independent LFV analysis gives strong constraints, that

make the models easily testable soon: NO light SUSY
No possibility to satisfy BR(x — ey) and day

Thanks for your attention
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Typical Tri-Bimaximal

[much more in Feruglio’s talk on Friday]
In typical TB (GR) models, the corrections are democratic in all the angles:

€ ~ € ~ € UV V o 1%
C12 ~ Ca3 =~ (13 C12 ~ Ca3 =~ (13
1. Corrections only from the charged lepton: &' =0
2. Corrections only from the neutrino sector: =0
3. Correction from both the sector and democratic: V=€

To maximize the success rate for

all the three mixing angles inside ok
the3o:
g

1-2. &Y, €6 ~0.1 £ of

B [

3. ¢~ 0.075 af

ra
™71

A Altarelli & Feruglio 2005 i
T’: Feruglio, Hagedorn, LM & Lin 2007 [, AETERT] T S T I
54: BaZZOCChi, LM & MoriSi 2009 000 .05 a0 0.15 (.20 0.25
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Special Tri-Bimaximal
[much more in Feruglio’s talk on Friday]

In special TB models, the corrections are specific in certain flavour directions:
A;: Lin 2009

__ VvV __ 1%
Clg = Co3 =0 013750

€ ~ € ~o €
C1g ~ C33 ~ Cy3

fy > ge

To maximize the success rate for ik
all the three mixing angles inside |
the3o: sof
gl/ ~ 018 40:.
T
a, or
Wk
1o f

O F : pp——— L i wid g e ges ded o

0.00 (.05 .10 0.15 0.20 0.25

1
Luca Merlo, Discrete Flavour Groups, Neutrino Reactor Angle and LFV g 23



Bimaximal

[much more in Feruglio’s talk on Friday]
Also in BM models, the corrections are specific in certain flavour directions:

S4: Altarelli, Feruglio and LM 2009
Adelhart, Bazzocchi and LM 2010

e e e __
5 . Clg, €13 7 0 c13 =10
<€
V o Vo~ UV
C12 =~ Co3 ~ C13
To maximize the success rate for >+ T L
all the three mixing angles inside .t : 3
the3o: : / - :
25 : : .
£ ~0.17 / : 5
20 ' E
X ; :
: :
R 15F : .
o / i 5
(Similar results when the =t / - :
. [ | 4
corrections come from the 05F /' | -
. . [ | ]
neutrino sector instead of : S/ : :
00 bl peyepp—p—— e e
the charged lepton sector.) 0.00 0.05 0.10 0.15 0.20 0.25
[Bazzocchi & LM, arXiv:1205.5135] e
Luca Merlo, Discrete Flavour Groups, Neutrino Reactor Angle and LFV f 24



Typical Tri-Bimaximal

H v v Vs
-
sin® 9’{23 = 1/3 v. I Vs
- 2 nTB
sin® 6y, = 1/2 2/3  1/4/3 0
SineTB . \ UTB — _1/\/6 1/\/3 —1/\/§
— 7 —1/V6 1/v/3 +1/v2

In the basis of diagonal

T
charged leptons: J J

M,TB: Y z rT+y—=z

mu-tau sym
y rTTy—=z z magic sym
Discrete [As: Adhikary; Altarelli; Aristizabal Sierra; Babu; Bazzocchi; Bertuzzo; Di Bari; Branco; Brahmachari; Chen;
Choubey; Ciafaloni; Csaki; Delaunay; Felipe; Feruglio; Frampton; Frigerio; Ghosal; Grimus; Grojean;
Sym metnes: Grossmann; Hagedorn; He; Hirsch; Honda; Joshipura; Kaneko; Keum; King; Koide; Kuhbock; Lavoura;

Lin; Ma; Machado; Malinsky; Matsuzaki; de Medeiros Varzielas; Meloni; LM; Mitra; Molinaro; Morisi;
Nardi; Parida; Paris; Petcov; Pleitez; Picariello; Rajasekaran; Riazzudin, Romao; Serodio; Skadhauge;
Tanimoto; Torrente-Lujan; Urbano; Valle; Villanova del Moral; Volkas; Yin; Zee; ...;

S4, T/, A(3n?): de Adelhart Toorop; Altarelli, Bazzocchi; Chen; Ding; Hagedorn; Feruglio; Frampton; Kephart;
King; Lam; Lin; Luhn; Ma; Mahanthappa; Matsuzaki; de Medeiros Varzielas; LM; Morisi; Nasri;
Ramond; Ross;

o]
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The Altarelli-Feruglio Model

[Altarelli & Feruglio 2005]

A, is the group of even permutations of 4 objects isomorphic to the

group of the rotations which leave a regular tetrahedron invariant
(Subgroup of SO(3)).
It has 12 elements and 4 representations: 3,1, 1’, 1”

> - keeps separated the two sectors
Gr=As X Gaugz - explains the hierarchy

Mme K< My, < My

(pe) o)

Gg:Z;g G,/:ZQ

v N\

diag TB
M M

= = U=U/U,=U""
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The Altarelli-Feruglio Model

[Altarelli & Feruglio 2005] Matter fields Higgs Flavons
e p¢ T | huya 0 wr s &
Ay 1 17 1 1 | o a 1
62 C 9 c / c 1
We = Yeyz3€ (1) ha + Yuog 15 (p1l) ha + yr 7 (01l) " ha
L b L oh g Expansion in
w,,:a:aé utlly T PSS Nyl ¢/A
AN Af A Af
vacuum alignment:
f< )
©T) , m m
B ——— (©,0,0) | M, = diag(y. t%, Yu'ls Yr) Vg u [me — m“ =t~ 0.05j
i T
—<ijs> = cp(u, u, u)
a_|_2 _b _b (]wdiag _ .27 )
(€) 3 3 3 %9 = pidiag(a + b, a, —a + b)
A M, -2 -t CAm2, 1
b b2 = 5  ~
\_ J
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Mass Insertion Approximation

To get EDM, MDM and the LFV transitions we should calculate diagrams as:
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SUSY Parameters

Many parameters: My, My, i, tan g, m%, m%, Ao

All of them are not independent: m% (Af) — m%(Af) = Ap = my

tan 8 ~ 1000y,

SUGRA context: m7 (mw) ~m7(As) +0.5M5(Af) +0.04M7(Ay)

mp(mw) =~ my(Ay) + 1.5M7 (Ay)

1+ 0.5tan? 3 0.5+ 3.5tan? 3 1
2 2 2 L 9
il = tan? 8 — 1 Mo+ tan? 3 — 1 Mia 52
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mo = 5000 GeV & tan 3 = 15

BR(p — ey) < 2.4 x 10712

10—6 SpeciaITB"' )
)
S
(a4
aa) 10_14 1
10—16 R s B 0 VX o et B Ll P
0 1000 2000 3000 4000 5000
Luc M, (GeV)

—~ Typical TB —————

M1/2 (GCV)
0 g
1078
10—10
10°"2
1074
10—16 .............'..............
0 1000 2000 3000 4000 5000

M, (GeV)



Numerical Accidents?

Are these patterns only numerical accidents? If Yes what?

) p) [Review: Altarelli, Feruglio & Masina 2002]
AnarChy ( ) [Recentrly: Buchmuller, Domcke & Schmitz 2011]

Consist in using a simple U(1) as flavour symmetry:
- many parameters already at the LO
- low predictive power
- no correlations among observables

——3 but the mixing angles and the r parameter can be accommodated

P, % P %
SU(5) x U(1) ; 20
g 15
\Ijl() — (57 37 O) 6 10
4
Ve = (2,0,0) p -LI_ 5
r | |
v, =(1,-1,0) 10° 10 107 107 1072 107" 1 02 04 06 08 1%
P % P %
6
8
et € € 5
6 4
m, = € 0 O 3
4
e 0 0 2
2 1
e~ 0.5 ; 7 OtanZHIZ 7 ]Otan2923



