Probing the Universal Extra Dimension at the LHC

Jesús M. Moreno

Instituto de Física Teórica UAM/CSIC, Madrid

based on work done in collaboration with A. Belyaev, M. Brown, and C. Papineau

Planck 2012, Warsaw May 2012

Outline

- Introduction
- The model
- Spectrum and radiative corrections
- Constraints
- Implementation
- MUED at the LHC
- Conclusion

Introduction

Motivation

.....

• Many beyond the SM theories rely on the existence of Extra Dimensions (ED)

(eg, superstring theory, the best candidate to unify gravity & gauge interactions, is only consistent in 10 D space-time)

- The presence of ED could have an impact on scales $<< M_{Planck}$
- \Rightarrow New perspectives to address issues such as
 - The nature of electroweak symmetry breaking
 - The origin of fermion mass hierarchies
 - The supersymmetry breaking mechanism
 - The nature of dark matter
 - The description of strongly interacting sectors (provide a way to model them)

Introduction

The underlying physics will depend on

• Size and shape of Extra Dimensions

Compact (circle, tori ...), ADD, warped (eg Randall Sundrum) Large Volume, etc

- The existence of **space-time subspaces** in which the different fields propagate (motivated by D-branes)
- The presence of **background fields**

(e.g. fluxes)

Let us concentrate on the size:

Although present data constraint them, they could be **as large as** $O(I \text{ TeV})^{-I}$

✓ In this case they would be <u>accessible at the LHC</u>

✓ Such models could be relevant for DM purposes (WIMP ~ O (I TeV))

Simplest one:

Minimal Universal Extra Dimension scenario

 Space-time: flat 4D x one single extra dimension compactified on a circle of radius R

- The SM particles are promoted to 5D fields that propagate in the whole space-time
- Gauge couplings are not dimensionless:
 ⇒ non-renormalizable model
 - ~ an effective 5D theory valid up to some cut-off Λ
- For small radius, R, it is reduced to an effective 4D theory whose light spectrum contains the SM

The **precise** SM is obtained by imposing a \mathbb{Z}_2 symmetry $S^1 \rightarrow S^1/Z_2$

- It breaks the translational invariance along y
- I/2 of the 4D fermions are projected out allowing for chirality

Appelquist, Cheng, Dobrescu 2001

 $S^1 imes \mathcal{M}_4$

• 5D $P_M P^M = 0$ M = 1, 2, 3, 4, 5• 4D $p_\mu p^\mu - \frac{n^2}{R^2} = 0$ $\mu = 1, 2, 3, 4$

 $m^2 = \frac{n^2}{R^2}$

$$m^2 = \frac{n^2}{R^2} \qquad \qquad m^2 = m_0^2 + \frac{m^2}{R^2} + \frac{m^2}$$

 n^2

 $\overline{R^2}$

 $\frac{n}{R}$

0

Spectrum Like in the Hidrogen atom I = 1/2F = 2fine structure splitting J = 3/2F = 1 $n = 2, {}^{2}P$ 2 hyperfine structure splitting F = 1J = 1/2F = 0F = 1J=1/2 $n = 1, {}^{2}S$ 0 F = 0

$$m^2 = \frac{n^2}{R^2}$$
 $m^2 = m_0^2 + \frac{n^2}{R^2}$ $m^2 = m_0^2 + \frac{n^2}{R^2} + \Delta_{loop\ corr}$

Transitions between KK modes?

If neutral, the LKP could be a WIMP Dark Matter candidate

 $O(\mathsf{ITeV})$

..... like SUSY R-parity and LSP (neutralino DM)

Our goal:

A. Belyaev, M. Brown, J.M. and C. Papineau

Provide a description of the effective 4D modes (masses and interactions)

Consistent

- -Preserves gauge invariance (from the 5D point of view)
- -Preserves unitarity
- or break it in a controlled way (when keeping a part of the infinity KK tower)

Accurate

-Include 5D quantum corrections that lift the spectrum degeneracy and fix the mass splitting

- i) crucial for LHC searches (decay modes, softness of final states)
- ii) crucial for DM evaluation (coanihilation effects, resonances)
- Interplay with EWSB effects (complicated mixings)

Radiative corrections

Dispersion relations

- Fixed by 5D Lorentz invariance of the tree level Lagrangian:

$$E^2 = \vec{p}^2 + p_5^2 = \vec{p}^2 + m_n^2$$

- Compactification breaks 5D Lorentz invariance: Loop diagrams will correct KK masses !

Brane corrections

 p_5 is non-conserved ($\Delta p_5 \neq 0$ at fixed points)

 $\delta m_n = \beta_i \frac{n}{R} \ln \frac{\Lambda^2}{\mu^2}$ $\delta m_n^2 = \beta_i \frac{n^2}{R^2} \ln \frac{\Lambda^2}{\mu^2}$

Radiative corrections

This fixes our set-up

We model the corrections to the self-energy by wave-function normalisations. We replace a 5D-Lorentz conserving action

$$-\frac{1}{4}F^a_{MN}F^{aMN} + |D_M\Phi|^2$$

by the following:

$$-\frac{1}{4}F^{a\mu\nu}F^{a}_{\mu\nu} + \frac{1}{2} \, \mathbf{Z}_{\mathbf{v}}F^{a}_{\mu5}F^{a\mu}_{5} + |D_{\mu}\Phi|^{2} - \mathbf{Z}_{\Phi} \, |D_{5}\Phi|^{2}$$

0

Belanger, Kakizaki, Pukhov

which is gauge invariant but not Lorentz covariant.

In this way, the fields receive a KK mass

$$m_n = Z \frac{n}{R} \qquad \qquad m_n^2 = Z \frac{n^2}{R^2}$$

and fit

$$Z_i = 1 + \beta_i \ln \frac{\Lambda^2}{\mu^2}$$

Figure 1: The first KK level of the MUED spectrum for $R^{-1} = 800$ GeV, $m_H = 120$ GeV, $\Lambda R = 20$ and $\mu R = 1$, at tree level (left) and one loop (right).

Figure 2: The first KK level of the MUED spectrum for $R^{-1} = 1500 \text{ GeV}, m_H = 120 \text{ GeV},$

Spectrum

Model Implementation

• In LanHEP :

Semenov, 2010

LanHEP is a package that generates the Feynman rules out of a Lagrangian. We have implemented MUED@ILoop in Feynman and unitary gauges. We discart the bulk corrections.

• In CalcHEP/CompHEP :

Pukhov, 1999

CalcHEP calculates cross-sections out of Feynman rules of a theory. The vertices generated by LanHEP are included into CalcHEP. We have taken particular care of the splitting of 4-gluon vertices. The procedure is entirely automated.

We are cross-checking our implementation with the Annecy group. It agrees in the unitary gauge.

Process	DKM	BBMP		Codo validation
$G^{(1)} G^{(1)} \to G G$	3.135E+1	3.1	35E+1	Code validation
$G^{(1)} G o G^{(1)} G$	3.183E+3	3.1	83E+3	
$G^{(1)} G^{(1)} \to G^{(1)} G^{(1)}$	3.170E+3	3.1	57E+3	
$G^{(1)} Z^{(1)} \to c \bar{c}$	$3.952E{-2}$	3.8	888E-2	
$G^{(1)} \gamma^{(1)} ightarrow b \overline{b}$	6.761E - 3	6.1	95E-3	
$\gamma^{(1)} \gamma^{(1)} \rightarrow t \bar{t}$	6.837E-3	5.5	530E-3	
$Z^{(1)} Z^{(1)} \rightarrow d \overline{d}$	1.830E - 2	1.8	80E-2	
$Z^{(1)} Z^{(1)} \to W^+ W^-$	6.910E+0	6.8	378E + 0	
$W^{+(1)} W^{-(1)} \to Z Z$	2.040E + 0	2.0	041E+0	
$W^{+(1)} W^{-(1)} ightarrow Z \gamma$	1.226E + 0	1.226E+0 3.114E+0		Sample of processes with two-gauge bosons for cross-section comparison (in pb) between previous implementation (Datta, Kong, Matchev DKM) and our implementation (BBMP).
$W^{+(1)} W^{-(1)} \to W^{+} W^{-}$	3.507E + 0			
$W^{+(1)} W^{-(1)} ightarrow \gamma \gamma$	$1.842E{-1}$	$1.842E{-1}$		
$Z \gamma ightarrow W^{+(1)} W^{-(1)}$	1.738E + 0	1.738E + 0		
$Z^{(1)} Z^{(1)} \to W^{+(1)} W^{-(1)}$	3.635E+2	3.615E + 2		
$Z Z^{(1)} \to W^+ W^{-(1)}$	1.134E+2	1.097E+2		
$W^{+(1)}W^{-(1)} \to W^{+(1)}W^{-(1)}$	1.820E + 2	1.816E + 2		
		$P^{(1)}$	5.194E - 2	
$W^+ W^{-(1)} ightarrow Z^{(1)} \gamma$	2.858E+1	$V^{(1)}$	2.853E + 1	
		total	2.858E + 1	
		$P^{(1)}$	2.015E - 1]
$W^+ W^{-(1)} \to Z^{(1)} Z$	1.134E+2	$V^{(1)}$	1.097E+2	
		total	1.099E+2	

The tower of KK particles modify the gauge bosons self-energies, contributing to the S,T, and U electroweak parameters:

T. Appelquist H.-U. Yee 2001 I. Gogoladze and C. Macesanu, 2006

$$\begin{split} S &= \quad \frac{4\sin^2\theta_W}{\alpha} \; \left[\frac{3g^2}{4(4\pi)^2} \left(\frac{2}{9} \frac{m_t^2}{M_{KK}^2} \right) \zeta(2) \; + \; \frac{g^2}{4(4\pi)^2} \left(\frac{1}{6} \frac{M_H^2}{M_{KK}^2} \right) \zeta(2) \right] \,, \\ T &= \quad \frac{1}{\alpha} \; \left[\frac{3g^2}{2(4\pi)^2} \frac{m_t^2}{M_W^2} \left(\frac{2}{3} \frac{m_t^2}{M_{KK}^2} \right) \zeta(2) \; + \; \frac{g^2 \sin^2\theta_W}{(4\pi)^2 \cos^2\theta_W} \left(-\frac{5}{12} \frac{M_H^2}{M_{KK}^2} \right) \zeta(2) \right] \,, \\ U &= \quad -\frac{4\sin^2\theta_W}{\alpha} \; \left[\frac{g^2 \sin^2\theta_W}{(4\pi)^2} \frac{M_W^2}{M_{KK}^2} \left(\frac{1}{6} \zeta(2) - \frac{1}{15} \frac{M_H^2}{M_{KK}^2} \zeta(4) \right) \right] \,, \end{split}$$

The tower of KK particles modify the gauge bosons self-energies, contributing to the S,T, and U electroweak parameters:

T. Appelquist H.-U. Yee 2001 I. Gogoladze and C. Macesanu, 2006

FCNC

K. Agashe, N.G. Deshpande, G.-H. WuL. A. J. Buras, A. Poschenrieder, M. Spranger, A. Weiler

KK modes will give contributions to FCNC processes . From $b \rightarrow s \gamma$

I/R > 600 GeV

Cosmology (DM)

Belanger, Kakizaki, Pukhov

The evaluation of the LKP relic abundance depends on the spectrum details and on the number of KK levels included in the calculation (eg level 2 resonances, level 2 particles in the final state, etc) Electroweak symmetry breaking effects are also important.

I/R as high as I.3 TeV

WMAP imposes a bound from above to DM scale: if DM were heavier it would lead to the Universe having a measurable positive curvature

I/R < I.6 TeV

See also T. Flacke and M. Brown talks

B. Bhattacherjee, K. Ghosh

H. Murayama, M. Nojiri, K. Tobioka

A. Belyaev, M. Brown, J.M. M. and C. Papineau

- KK-gluon and KK-quarks are the particles with largest production cross section at the LHC.
- For $R^{-1} > 500 \text{ GeV}$, q_1q_1 production dominates.

• We use lepton multiplicity to clasify the # of events

Main backgrounds for multilepton processes

Lepton multiplicity distribution for background versus signal after the acceptance cuts

Invariant mass of the two leptons with the highest P_T for the background versus the signal after the acceptance cuts

mUED Signal vs Background @LHC, $\sqrt{s} = 7 \text{ TeV}$

 $\int_{-1}^{10} \int_{0}^{2} \int_{25}^{10} \int_{50}^{10} \int_{75}^{10} \int_{10}^{10} \int_{0}^{10} \int_{25}^{10} \int_{50}^{10} \int_{75}^{10} \int_{10}^{10} \int_{10}^$

Transverse momentum of the 1st, 2nd and 3rd highest P_T leptons after the acceptance and $|M_Z - M_{11}| > 10$ GeV mass window cuts for backgrounds versus signal

Lepton multiplicity distribution for background versus signal after all cuts (acceptance, mass windows cut, $P_T^{11} < 100 \text{ GeV}$, $P_T^{12} < 70 \text{ GeV}$, $P_T^{13} < 50 \text{ GeV}$, MET > 50 GeV, $M_{eff} > R^{-1}$ /5) applied,

MET / M_{eff} distribution for background versus signal after acceptance, mass window cut, $P_T^{11} < 100$ GeV, $P_T^{12} < 70$ GeV, $P_T^{13} < 50$ GeV cuts

LHC @ 7 TeV exclusion and discovery potential for mUED for different luminosities.

Conclusion

- We have developed the effective 4D MUED@IL model by including EWSB and loop-corrections in a gauge invariant manner.
- We have implemented it in LanHeP + CalcHEP code that will make public soon.
- Present data provide strong constraints on the (R⁻¹, m_H) model parameters.
- KK vs SUSY: decay produced particles are softer.
- 3-lepton signal seems the more promising channel to look for MUED at the LHC
 - New techniques: (same / different sign leptons, mT2, etc)
 - Devoted analysis, new LHC data