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but all known  examples asymptote to CFT

conceivable RG flows

• free  (QED, massless QCD)
• strongly coupled (Supersymmetry)
• trivial (real QCD)

a-theorem suggests constraints on other options
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✦ Learning about QFT by plugging it in external metric dilaton
 background

₍        ₎

✦ Ruling out non-CFT asymptotics in perturbation theory

✦ Towards a non-perturbative proof
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QFT in gravity background

dilaton 
background

gµν = ηµν

W [ĝµν ]
1
√
g

δ

δĝµν(x)
≡ Tµν(x)

• diff invariant
• finite up to local counterterms

quantum effective action

ĝµν = Ω(x)2gµν

Ω ≡ 1 + ϕ
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possible counterterms 

�
ĝ

�
ĝR

�
ĝR2

�
ĝE4

�
ĝW 2

Ω4 Ω�Ω Ω−2(�Ω)2 0 0

On-shell dilaton amplitudes are fixed by flat limit QFT 

On shell dilaton : �Ω = 0

modulo 
C.C. term

A(p1, . . . , p4) =
δ4W

δϕ(p1) · · · δϕ(p4)
= �T (p1)T (p2)T (p3)T (p4)�+ contact terms.

( dim ≤ 4 )

p21 = p22 = p23 = p24 = 0
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QFT = A(s, t)

finite and yet localIn CFT

−2 a (∂ lnΩ)4

A(s, t) a

In approximate CFT          =  running coupling in (Wilsonian) effective actiona

Komargodski, Schwimmer ’11

Weyl
anomaly

Tomboulis 1990
Schwimmer, Theisen ’11

A(s, t)

WCFT [Ω
2gµν ] = WCFT [gµν ]− SWZ[gµν ,Ω; a, c]
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CFTUV

CFTIR
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CFT
UV              CFT

IR

�

C

A(s, 0)

s3
ds = 0

IUV

IIR

IRG

IIR + IUV + IRG = 0

aIR = aUV − IRG

• IRG  is nicely finite in CFT-to-CFT flows

• It had to be so, cause         does not require renormalization;        
it is just a function of the renormalized QFT couplings

•  Finiteness of  IRG                          constraint on QFT asymptotics

A��

< aUV

IRG =
1

4π

�
ImA

s3
=

1

4π

�
σ

s2
> 0
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✦ Learning about QFT by plugging it in external metric dilaton
 background

₍        ₎

✦ Ruling out non-CFT asymptotics in perturbation theory

✦ Towards a non-perturbative proof

da

d lnΛ
=

dIRG

d lnΛ
study
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S[Ω2ηµν , Φ̂, mi] = S[ηµν , Φ, Ωmi] Φ = Ω∆ΦΦ̂

marginal 
coupling

 in dim reg

λ0 = µ�P (λ(µ), �)
RG inv

∆W leading = �0|TΦ4(x)Φ4(y)|0�

Unitar
ity

Ω�µ�P (λ(µ), �) = µ�P (λ(Ωµ), �)

µ
da

dµ
= cλβ

2
λ > 0

Lint = βλ lnΩ
Φ4

4!

�
1 +

(lnΩ)

2
∂λβλ + . . .

�

∆W leading = + cλ β
2
λ lnµ2

�
d4x (∂ lnΩ)4.cλ =

1

212(4!)2π6
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Analogous computation for gauge and Yukawa couplings

µ
da

dµ
=

�

A

cAβ
2
A

( 1 + O(α) )

cA > 0

aUV − aIR =

� tUV

tIR

dt
�

A

cA β2
A

integral must converge :   two cases

I.   theory exits perturbative regime :  can’t say much in general

II.  throughout RG flow O(α) � 1

�
dtβ2 < ∞

lim
t→±∞

βA(t) = 0

Jack, Osborn 1984
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a-finiteness             weakly coupled asymptotics must be  free CFTs
βA = 0

Corollary:    perturbative SFT asymptotics are ruled out

SFT βA �= 0
�

A

β2
A = C = const

but no counterterm 
exists to account for 

this log

C = 0 βA = 0

aUV − aIR = C ln
ΛUV

ΛIR

Fortin, Grinstein, Stergiou ’11
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•  do not see how to  carry out argument to SFTs in  

• E4 non vanishing in 

•  ‘quick analysis’ shows no contradiction as long as

4 − �

|βA| <
√
�

D = 4 − �
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Non perturbative argument contra 4D SFTs

Sµ = Tµ
ν x

ν + V µ 0 = ∂µS
µ = Tµ

µ + ∂µV
µ

SFT Wess 1960
Polchinski 1988

= �T (p1)T (p2)T (p3)T (p4)� + �T (p1 + p2)T (p3)T (p4)�+ permutations

+ �T (p1 + p2)T (p3 + p4)�+ permutations

SFTA(s, t) =

+ �T (p1 + p2 + p3)T (p4)�+ permutations

In SFT  one would expect amplitude to be non-local

and, in particular,   

T ≡ Tµ
µ = −∂µV

µ �= 0

T �= 0
ImA(s, 0) �= 0
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is constrained by scale invariance and unitarityImA(s, 0)

ImA(s, 0) = C s2 C ≥ 0

dispersion relation

aIR − aUV = − 1

4π

�
ImA

s3
=

C

4π
ln

ΛIR

ΛUV

absence of candidate
counterterm

C = 0

ImA(s, 0) = 0
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optical
theorem ImA(s, 0) = sσ(ϕϕ → SFT) × f4

SFT

2

= �

Ψ

���Ψ|T
�
T (p1)T (p2)

�
+ T (p1 + p2) |0�

��2=

ImA(s, 0) = 0 T
�
T (p1)T (p2)

�
+ T (p1 + p2) = 0

unitarity
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T
�
T (p1)T (p2)

�
+ T (p1 + p2) = 0

• Near conformal case (ex. perturbative case) 

T
�
T (p1)T (p2)

�
∼ β2 � β ∼ T (p1 + p2)

constraint satisfied only for T (p1 + p2) = 0 CFT
all boils down to �Ψ|T (p1 + p2)|0� = 0 like in 2D proof 

•             et             are not arbitraryp1 p2 p21 = p22 = 0

cannot  yet directly infer T
�
T (x1)T (x2)

�
+ δ4(x1 − x2)T (x1) = 0

and conclude T is trivial
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The  importance of  Unitarity

•Non-unitary SFT:                   can be compatible   with                        
thanks to cancellation between positive and negative norm state   

T �= 0 ImA = 0

• no log divergence in        :   must have   a ImA = 0

• check:    massless vector without gauge invariance

SFT with virial current V µ = hAνF
µν

for  exclusive final states�= 0

= 0 inclusive 

S =

�
d4x

�
−ĝ

�
1

4
FµνF

µν +
h

2
(∇µA

µ)2
�

Coleman, Jackiw 1971
Riva, Cardy 2005
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Summary

Finiteness of total RG flow of a-anomaly

Monotonicity µ
da

dµ
≥ 0

Powerful 
constraint

on RG-flow

✦ Perturbative theories lim
lnµ→±∞

β = 0

✦ Same conclusion for small deformations of strongly coupled CFTs

predict FGS 4D examples will turn out to be CFTs and not SFTs

same conclusion, different method, in supersymmetry Antoniadis, Buican  ’11
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✦ Non-perturbative constraint on SFTs

µ
da

dµ
= 0

�Ψ|T
�
T (p1)T (p2)

�
+ T (p1 + p2) |0� = 0 ∀Ψ

very close to implying                     T ≡ Tµ
µ = 0 but not there yet                   

✦ Non-unitary example (theory of elasticity in 4D classical stat mech)

�Ψ|T
�
T (p1)T (p2)

�
+ T (p1 + p2) |0� �= 0

while still             ...as it must !        
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