Searches for New Physics with **BABAR**

Steven Robertson Institute of Particle Physics & McGill University

Presented at **Planck 2012** on behalf of the BABAR Collaboration May 30, 2012 Warsaw, Poland

Tree level processes:

- $B \rightarrow D^{(*)} \tau \nu$
- $B^+ \rightarrow \tau^+ \nu$ and

FCNC processes:

- $b \rightarrow s \gamma$
- $B \to K^{(*)} l^+ l^-$

Rare & forbidden decays:

- $B^+ \rightarrow h^+ \tau^+ l^$ $h = K, \pi$
- $B^+ \rightarrow h^- l^+ l^+$
- $B^0 \rightarrow v \overline{v} (\gamma)$ (i.e. invisible final states)

 e^+e^- collisions at CM energy of ~10.5 GeV

Tree-level processes

May 30, 2012Searches for New Physics with BABARSteven Robertson

 Tree-level semileptonic decays sensitive to CKM matrix element |V_{cb}| but heavy 3rd generation lepton provides potential sensitivity to charged Higgs boson

• Dependence on $|V_{cb}|$ and form factors can be (mostly) cancelled in ratio of τ and (e,µ) modes:

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

SM expectation: Nierste, Trine, Westhoff (2008) Phys. Rev. D78 015066 $R(D) = 0.31 \pm 0.02$ $R(D^*) = 0.25 \pm 0.02$

 Relatively high branching fractions; experimental challenge is to distinguish between leptonic final states with one or more neutrinos

Leptonic B decays, $B^+ \rightarrow l^+ v$:

$$\mathcal{B}(B^+ \to \ell^+ \nu)_{\rm SM} = \frac{G_F^2 M_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{M_B^2}\right)^2 f_B^2 |V_{ub}|^2 B$$

- "Parametric" uncertainty in SM prediction from $f_{\rm B}|V_{\rm ub}|$ problematic due to tension between "inclusive" and "exclusive" $|V_{\rm ub}|$ measurements
- $B^+ \rightarrow \tau^+ \nu$ has largest branching fraction but is experimentally more difficult than $B^+ \rightarrow (e,\mu)^+ \nu$ due to additional neutrinos

Methodology

Limited kinematic information available in B decays with neutrinos (or other missing energy) necessitates use of exclusive tag B reconstruction

 Exclusively reconstruct one of the B meson decays ("tag B") in one of several thousand hadronic decay modes:

- Improves knowledge of signal kinematics and missing energy, as well as strongly suppressing combinatorial backgrounds
 - $\Rightarrow \quad \text{Similar "tag" methods used for } B \to D^{(*)}\tau v \text{ and } B^+ \to \tau^+ v \text{ measurements,} \\ \text{as well as searches for rare decays with missing energy signatures} \\$

$B \rightarrow D^{(*)} \tau v$ signal extraction

1.5

 $|p_{\ell}^*|$ (GeV)

Measure $B \rightarrow D^{(*)}hv$ and $B \rightarrow D^{(*)}\tau v$ simultaneously to determine ratios $R(D^{(*)})$

- 2-d fit to missing mass squared m²_{miss} and lepton momentum $|\mathbf{p}^*|$
- Simultaneous fit to $B \rightarrow D^{**}h$ control samples to determine backgrounds*

200

150

100

50

 $D^0\ell$

200

100

$B \rightarrow D^{(*)} \tau v$ results

Branching fraction measurements for $B \rightarrow D\tau v$ and $B \rightarrow D^{(*)}\tau v$ exceed SM expectation by 2.0 σ and 2.7 σ respectively

 -0.27 correlation between modes, yielding combined excess of 3.4σ (p-value 6.9x10⁻⁴)

Good consistency between charged and neutral modes

Decay	$\mathcal{R}(D^{(*)})$		
$\longrightarrow B^- \rightarrow D^0 \tau^- \overline{\nu}_{\tau}$	$0.429 \pm 0.082 \pm 0.052$		
$B^- \to D^{*0} \tau^- \overline{\nu}_{\tau}$	$0.322 \pm 0.032 \pm 0.022$		
$\blacktriangleright \overline{B}^0 \rightarrow D^+ \tau^- \overline{\nu}_{\tau}$	$0.469 \pm 0.084 \pm 0.053$		
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	$0.355 \pm 0.039 \pm 0.021$		
$\overline{B} \rightarrow D\tau^- \overline{\nu}_{\tau}$	$0.440 \pm 0.058 \pm 0.042$		
$\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$	$0.332 \pm 0.024 \pm 0.018$		

 H^+ contribution modifies experimental pdf shapes and hence signal efficiency as function of tan β/m_{H^+}

 Interpretation of R(D) and R(D*) within 2HDM (type II) yields inconsistent results

Isospin

constrained

 $(1.79 \pm 0.48) \times 10^{-4} \Leftrightarrow$ combination with (statistically independent) BABAR semileptonic-tag analysis

- B. Aubert et al., Phys. Rev. D 81, 051101(R) (2010)
- Consistent with previously published BABAR and Belle analyses based on independent data samples

SM branching fraction prediction depends on $f_{\rm B}|V_{\rm ub}|$ hence large uncertainty (ambiguity?) in comparison with experimental results:

May 30, 2012

Searches for New Physics with BABAR

FCNC processes

May 30, 2012Searches for New Physics with BABARSteven Robertson

Electroweak FCNCs

u.c.t

Wilson coefficients qui (calculated perturbatively; po encode short-distance physics)

Products of field operators

(non-perturbative hadronic matrix elements; Heavy quark expansion in inverse powers of m_b)

 $\begin{array}{lll} C_7 \mbox{ (Photon penguin)} & \mbox{ New} \\ \mbox{ Observables:} & \mbox{ distin} \\ \mbox{ branching fractions } E_{\gamma} \mbox{ spectrum, } A_{CP} & \mbox{ obs} \end{array}$

 C_7 , C_9 (Vector EW) and C_{10} Observables: (partial) branching fractions, A_{FB} , A_{CP} New physics could result in a distinctive pattern of deviations in observables across a variety of related FCNC modes

$$\mathbf{B}^{0}_{s/d} \to \boldsymbol{l}^{+}\boldsymbol{l}$$

C₁₀ (Axial vector EW) Observables: branching fractions

Obtain "inclusive" $B \rightarrow X_s \gamma$ by summing individual exclusive decay modes:

 X_s modes consist of 1 or 3 kaons (including ≤1 K_s^{0}), ≤1 η, and ≤4 pions (including ≤2 π^0)

 $1.6 < E_{v}^{*} < 3.0 \text{ GeV}$ (in CM rest frame)

- Fit m_{ES} to a sum of 38 X_s final states

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

SM expectation (NNLO)*: $\mathcal{B}(\bar{B} \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ Misiak et al. PRL 98 022002 (2007) * For photon energy E_v>1.6 GeV

Photon energy in B rest frame obtained from:

$$E_{\gamma}^B = \frac{m_B^2 - m_{X_s}^2}{2m_B}$$

May 30, 2012

Partial branching fractions combined to obtain inclusive branching fraction ($E_{\gamma} > 1.9$ GeV):

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.9 \text{GeV}} = (3.29 \pm 0.19 (\text{stat.}) \pm 0.48 (\text{syst.})) \times 10^{-4}$$

- Good consistency with previous measurements

 $B \rightarrow K^{(*)}l^+l^-$ decays occur in SM via one-loop FCNC processes with branching fractions of $O(10^{-6})$

Recent **BABAR** measurements of branching fractions, direct CP asymmetries and angular distributions 3.75 MeV/c

Reconstruct exclusive final states:

K*ℓ*⁺*ℓ*⁻: $K_{s}^{0}e^{+}e^{-}, K^{+}e^{+}e^{-}, K_{s}^{0}\mu^{+}\mu^{-}, K^{+}\mu^{+}\mu^{-}$

 $K^{*}\ell^{+}\ell^{-}$: $K_{s}^{0}\pi^{+}e^{+}e^{-}, K^{+}\pi^{-}e^{+}e^{-}, K_{s}^{0}\pi^{+}\mu^{+}\mu^{-}, K^{+}\pi^{-}\mu^{+}\mu^{-}$ $K^+\pi^0 e^+ e^-$ (only for angular analysis)

$\mathbf{B} \longrightarrow \mathbf{K}^{(*)} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$

0.6 /GeV²/c⁴) Branching fraction results: 0.5 Partial branching fraction measured in • 0.4 bins of q^2 excluding J/ ψ and $\psi(2S)$ 0.3 regions 0.2 Total branching fractions determined • q²≡s=m₁² 0.1 over entire q² range dBF/ds (10⁻⁷/GeV²/c⁴) 1.2 $\mathcal{B}(B \to K \ell^+ \ell^-) = (4.7 \pm 0.6 \pm 0.2) \times 10^{-7},$ $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.2^{+1.4}_{-1.3} \pm 0.5) \times 10^{-7}.$ 0.8 0.6 0.4 0.2 $K^{*}l^{+}l^{-}$ 15 10 20 s (GeV²/c²) 0 5 Ali '02 BABAR 471 M BB CDF 6.8 fb⁻¹ PRL 107, 201802 (2011) PRD 66, 034002 (2002) Belle 657 MBB PRL 103, 171801 (2009) Zhong '02 Kl^+l^- LHCb 0.37 fb⁻¹ arXiv:1112.3515 (2012) IJMPA 18, 1959 (2003) SM-based predictions × 10⁻⁶ Ball & Zwicky, PRD71, 014015(2005), 0.5 1.5 2 2.5 1 0 **Branching Fraction** PRD71, 014029(2005); Ali et al., PRD 66, 034002 (2002).

May 30, 2012

 Direct CP asymmetry consistent with SM expectation of zero

$$\mathcal{A}_{CP}^{K^{(*)}} \equiv \frac{\mathcal{B}(\overline{B} \to \overline{K}^{(*)}\ell^+\ell^-) - \mathcal{B}(B \to K^{(*)}\ell^+\ell^-)}{\mathcal{B}(\overline{B} \to \overline{K}^{(*)}\ell^+\ell^-) + \mathcal{B}(B \to K^{(*)}\ell^+\ell^-)}$$

 No evidence of lepton flavour asymmetry

$$\mathcal{R}_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

• *ℓ*⁺*ℓ*⁻ forward-backward asymmetry **A**_{FB}

$$\frac{1}{\Gamma(s)}\frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4}F_{L}(s)(1-\cos^{2}\theta_{\ell}) + \frac{3}{8}(1-F_{L}(s))(1+\cos^{2}\theta_{\ell}) + \mathcal{A}_{FB}\cos\theta_{\ell}$$

BABAR Preliminary

Recent preliminary **BABAR** results based on full data sample

Most precise non-LHCb results to-date

- Generally good agreement with SM and other experiments
 - some mild tension in low-s region

 Ali et al. PRD 61, 074024 (2000) Buchalla et al. PRD 63, 014015 (2001) Ali et al. PRD 66, 034002 (2002) Krüger et al. PRD 61, 114028 (2002) Krüger & Matias PRD71, 094009 (2005) Ball & Zwicky, PRD71, 014029(2005)

Rare & forbidden decays

May 30, 2012Searches for New Physics with BABARSteven Robertson

Lepton number not explicitly conserved in many SM extensions

• LNV in $B^+ \to h^- \ell^+ \ell^+$ is ΔL =2 process which can occur via Majorana neutrinos

complementary to 0vββ searches

BABAR search for $B^+ \rightarrow h^- \ell^+ \ell^+$ (h=K, π)

• Event selection similar to $B \rightarrow K^{(*)}l^+l^-$ analysis

- Best electron channel results
- Sensitivity comparable to LHCb in $\mu^+\mu^-$ modes:

LHCb: $B(B^+ \rightarrow X^- \mu^+ \mu^+) < 1.3 \times 10^{-8} - 2.6 \times 10^{-6}$ (41 pb⁻¹) PRL 108, 101601 (2012); arXiv:1201.5600

Mode	$\mathcal{B} (\times 10^{-8})$	$\mathcal{B}_{UL}~(imes 10^{-8})$
$B^+ \to \pi^- e^+ e^+$	$0.27^{+1.1}_{-1.2}\pm0.1$	2.3
$B^+ \to K^- e^+ e^+$	$0.49^{+1.3}_{-0.8}\pm0.1$	3.0
$B^+ \to \pi^- \mu^+ \mu^+$	$0.03^{+5.1}_{-3.2}\pm0.6$	10.7
$\underline{B^+ \to K^- \mu^+ \mu^+}$	$0.45^{+3.2}_{-2.7}\pm0.4$	6.7

$\mathbf{B}^{\pm} \rightarrow \mathbf{h}^{\pm} \boldsymbol{\tau}^{+} \boldsymbol{l}^{-} (\mathbf{h} = \mathbf{K}, \boldsymbol{\pi})$

Search for lepton flavour violating B decays with a 3rd generation charged lepton (τ)

 possible NP enhancement in models with 2nd - 3rd generation mixing or mass dependent couplings

Missing energy signature necessitates "hadronic tag reconstruction" analysis

- 1-prong τ decay modes $(e/\mu/\pi)$
- 4-vector of τ determined from h-*l*-B combination

	$\mathcal{B}(B o h au)$	$\mathcal{B}(B \to h \tau \ell) \; (\times 10^{-5})$			
Mode	central value	90% C.L. UL			
$B^+ \to K^+ \tau \mu$	$0.0 \ ^{+2.7}_{-1.4}$	< 4.8			
$B^+ \to K^+ \tau e$	$-0.6 \ ^{+1.7}_{-1.4}$	< 3.0			
$B^+ \to \pi^+ \tau \mu$	$0.5 \ ^{+3.8}_{-3.2}$	< 7.2			
$B^+ \to \pi^+ \tau e$	$2.3 \ ^{+2.8}_{-1.7}$	< 7.5			

Model independent limits on NP scale in τ - μ flavour changing operators*:

$\mathbf{B}^{\mathsf{v}} \rightarrow v \overline{v}(\gamma)$ ("invisible")

15 10

പ്

Total

- Data

Total

Signal

– Data

Background

Background Signal

 $B^0 \rightarrow \nu \overline{\nu}$

Nsig=-22 \pm 9 \pm 16

ε=0.018%

Eextra (GeV)

 $B^0 \rightarrow v \overline{v} \gamma$

 $N_{sig}=-3\pm5\pm7$

ε=0.016%

 $B^0 \rightarrow v\overline{v}$ strongly helicity suppressed FCNC in SM

- Presence of energetic photon removes suppression B($B^0 \rightarrow v \overline{v} \gamma$) ~ 10⁻⁹
- Possibility of enhancement to $\sim 10^{-7}$ - 10^{-6} in some new physics models (RPV SUSY, LED models)

Semileptonic tag reconstruction method to identify B decays with little or no additional detector activity

Require no additional charged tracks, and select • events with limited $E_{extra} \equiv \sum E_{calorimeter}$

Many recent new results from **BABAR** on decays with potential sensitivity to new physics!

- Competitive new measurements of b→s FCNC processes based on full data statistics
- Stringent new limits on rare and forbidden B decays
- Interesting(?) discrepancies in tree-level leptonic and semileptonic decays

Backup slides

Signal events possess secondary e or μ from $\tau \rightarrow l \nu \nu$ while normalization modes have primary lepton from $B \rightarrow D^* l \nu$

• $p_e > 300 \text{ MeV}$ $p_{\mu} > 200 \text{ MeV}$ (improved particle identification!)

Four $B \rightarrow D^{(*)}\tau v$ signal decay modes considered: $D^{0}, D^{*0}, D^{+}, D^{*+}$

- D⁰, D⁺ exclusively reconstructed in one of several decay modes:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^0 \rightarrow K^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ $D^{*0} \rightarrow D^0 \pi^0, D^0 \gamma$ $D^0 \rightarrow K^- K^+$ $D^+ \rightarrow K^0_{\ S} \pi^+$ Calorimeter energy $D^0 \rightarrow K^- \pi^+ \pi^0$ $D^+ \rightarrow K^0_{\ S} \pi^+ \pi^+ \pi^$ not associated with $D^{*+} \rightarrow D^0 \pi^+$, $D^+ \pi^0$ $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ $D^+ \rightarrow K^0_{\ S} \pi^+ \pi^0$ $D^0 \rightarrow K^0_{\ S} \pi^+ \pi^$ tag- or signal-B $D^+ \rightarrow K^0_{\ S} K^+$
 - Kinematic fit with vertex constraint to reduce combinatorial backgrounds
- Select candidate ($B_{tag} + B \rightarrow D^{(*)}\tau v$) with lowest E_{extra}

Boosted decision tree used to further suppress combinatorial and $B \rightarrow D^{**}h$ backgrounds:

– Inputs: N_{tracks} , $cos\theta_T$, E_{extra} and reconstructed intermediate masses

May 30, 2012

Searches for New Physics with BABAR

Steven Robertson

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{0t}|^2 \right] d\tau$$

Average does not include new BABAR results

		_			$\mathcal{B}(B \to h \tau \ell) \; (\times 10^{-5})$		
Mode	τ channel	b_i	n_i	$\epsilon_{h\tau\ell,i}$	central value	90% C.L. UL	
	e	0.4 ± 0.2	2	$(2.6 \pm 0.2)\%$			
$B^+ \to K^+ \tau^- \mu^+$	μ	0.3 ± 0.2	0	$(3.2\pm0.4)\%$	$0.8 \ ^{+1.9}_{-1.4}$	< 4.5	
	π	1.8 ± 0.8	1	$(4.1\pm0.4)\%$			
	e	0.2 ± 0.1	0	$(3.7 \pm 0.3)\%$			
$B^+ \to K^+ \tau^+ \mu^-$	μ	0.2 ± 0.1	0	$(3.6\pm0.7)\%$	$-0.4 \ ^{+1.4}_{-0.9}$	< 2.8	
	π	6.9 ± 1.5	11	$(9.1\pm0.5)\%$			
	e	0.6 ± 0.1	2	$(2.2 \pm 0.2)\%$			
$B^+ \to K^+ \tau^- e^+$	μ	0.1 ± 0.1	0	$(2.7\pm0.6)\%$	$0.2 \ ^{+2.1}_{-1.0}$	< 4.3	
	π	1.5 ± 0.5	1	$(4.8\pm0.6)\%$			
	e	0.8 ± 0.5	0	$(2.8 \pm 1.1)\%$			
$B^+ \to K^+ \tau^+ e^-$	μ	0.1 ± 0.1	0	$(3.2\pm0.7)\%$	$-1.3 \begin{array}{c} +1.5 \\ -1.8 \end{array}$	< 1.5	
	π	4.6 ± 1.3	4	$(8.7\pm1.2)\%$			
	e	0.9 ± 0.6	0	$(2.3 \pm 0.2)\%$			
$B^+ \to \pi^+ \tau^- \mu^+$	μ	1.1 ± 0.4	2	$(2.9\pm0.4)\%$	$0.4 \ ^{+3.1}_{-2.2}$	< 6.2	
	π	3.3 ± 0.9	4	$(2.8\pm0.2)\%$			
	e	2.1 ± 0.5	2	$(3.8 \pm 0.3)\%$			
$B^+ \to \pi^+ \tau^+ \mu^-$	μ	3.6 ± 0.9	4	$(4.8\pm0.3)\%$	$0.0 \ ^{+2.6}_{-2.0}$	< 4.5	
	π	25 ± 3	23	$(9.1\pm0.6)\%$			
	e	0.1 ± 0.1	1	$(2.0 \pm 0.8)\%$			
$B^+ \rightarrow \pi^+ \tau^- e^+$	μ	0.4 ± 0.2	1	$(2.8\pm0.3)\%$	$2.8 \stackrel{+2.4}{_{-1.9}}$	< 7.4	
	π	6.0 ± 1.4	7	$(5.8\pm0.3)\%$			
	e	1.0 ± 0.4	0	$(2.9 \pm 0.3)\%$			
$B^+ \to \pi^+ \tau^+ e^-$	μ	3.0 ± 1.2	2	$(4.6\pm0.4)\%$	$-3.1 \stackrel{+2.4}{_{-2.1}}$	< 2.0	
	π	5.7 ± 2.5	3	$(3.7\pm1.0)\%$			

Rare charm decays

Search for decays of the form

 $X_c^+ \to h^{\pm} \ell^{\mp} \ell^{(\prime)+}$

where X_c^+ is D^+ , D_s^+ or Λ_c^+ and h is K, π or p (for Λ_c^+)

 Various lepton charge/flavour combinations represent (highly GIM suppressed) SM decays, LFV and LNV decays

SM predictions for GIM-suppressed modes ~10⁻⁸ but potentially enhanced by up to 3 orders of magnitude in NP models

 Complementary new physics sensitivity to rare B decays via d-type FCNC loops

PRD 66, 014009 (2002) PRD 64, 114009 (2001)

arXiv:1107.4465

Rare charm decays

Searches based on 384fb⁻¹ of BABAR data ("onpeak" + "offpeak")

- exclusively reconstruct 3-track final states, requiring two identified leptons
- Veto B decays by requiring $D^{\scriptscriptstyle +},\, D_s^{\scriptscriptstyle +}$ or $\Lambda_c^{\scriptscriptstyle +}$ candidate to have p^* >2.5 GeV/c
- QED backgrounds suppressed by requiring >4 tracks in the event
 - Long distance contributions from $D_{(s)}^{+} \rightarrow \pi^{+}\phi(\rightarrow l^{+}l^{-})$ removed by veto on ϕ mass region
 - Likelihood ratio to suppress remaining background

Signal yields obtained from fit to hll' invariant mass

 Normalized to rates for known 3-body hadronic modes with similar kinematics

			BR UL	BF UL
	Yield	Eff.	90% CL	90% CL
Decay mode	(events)	(%)	(10^{-4})	(10^{-6})
$D^+ \rightarrow \pi^+ e^+ e^-$	$-3.9 \pm 1.6 \pm 1.7$	1.56	3.9	1.1
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$-0.2 \pm 2.8 \pm 0.9$	0.46	24	6.5
$D^+ \rightarrow \pi^+ e^+ \mu^-$	$-2.9 \pm 3.4 \pm 2.4$	1.21	11	2.9
$D^+ \rightarrow \pi^+ \mu^+ e^-$	$3.6 \pm 4.3 \pm 1.3$	1.54	13	3.6
$D_s^+ \rightarrow \pi^+ e^+ e^-$	$8\pm34\pm8$	6.36	5.4	13
$D_s^+ \to \pi^+ \mu^+ \mu^-$	$20 \pm 15 \pm 4$	1.21	18	43
$D_s^+ \rightarrow \pi^+ e^+ \mu^-$	$-3\pm11\pm3$	2.16	4.9	12
$D_s^+ \rightarrow \pi^+ \mu^+ e^-$	$9.3 \pm 7.3 \pm 2.8$	1.50	8.4	20
$D^+ \rightarrow K^+ e^+ e^-$	$-3.7 \pm 2.9 \pm 3.3$	2.88	3.7	1.0
$D^+ \rightarrow K^+ \mu^+ \mu^-$	$-1.3 \pm 2.8 \pm 1.1$	0.65	16	4.3
$D^+ \rightarrow K^+ e^+ \mu^-$	$-4.3 \pm 1.8 \pm 0.6$	1.44	4.3	1.2
$D^+ \rightarrow K^+ \mu^+ e^-$	$3.2 \pm 3.8 \pm 1.2$	1.74	9.9	2.8
$D_s^+ \rightarrow K^+ e^+ e^-$	$-5.7 \pm 5.8 \pm 2.0$	3.20	1.6	3.7
$D_s^+ \to K^+ \mu^+ \mu^-$	$4.8 \pm 5.9 \pm 1.2$	0.85	9.1	21
$D_s^+ \to K^+ e^+ \mu^-$	$9.1 \pm 6.0 \pm 2.8$	1.74	5.7	14
$D_s^+ \rightarrow K^+ \mu^+ e^-$	$3.4\pm6.4\pm3.5$	2.08	4.2	9.7
$\Lambda_c^+ \to p e^+ e^-$	$4.0 \pm 6.5 \pm 2.8$	5.52	0.8	5.5
$\Lambda_c^+ \to p \mu^+ \mu^-$	$11.1 \pm 5.0 \pm 2.5$	0.86	6.4	44
$\Lambda_c^+ \to p e^+ \mu^-$	$-0.7 \pm 2.9 \pm 0.9$	1.10	1.6	9.9
$\Lambda_c^+ \to p \mu^+ e^-$	$6.2\pm4.6\pm1.8$	1.37	2.9	19

				BR UL	BF UL
		Yield		90% CL	90% CL
	Decay mode	(events)	(%)	(10^{-4})	(10^{-6})
	$D^+ \rightarrow \pi^- e^+ e^+$	$4.7\pm4.7\pm0.5$	3.16	6.8	1.9
	$D^+ \to \pi^- \mu^+ \mu^+$	$-3.1\pm1.2\pm0.5$	0.70	7.5	2.0
	$D^+ \to \pi^- \mu^+ e^+$	$-5.1 \pm 4.2 \pm 2.0$	1.72	7.4	2.0
	$D_s^+ \to \pi^- e^+ e^+$	$-5.7\pm14.\pm3.4$	6.84	1.8	4.1
)	$D_s^+ \to \pi^- \mu^+ \mu^+$	$0.6\pm5.1\pm2.7$	1.05	6.2	14
	$D_s^+ \to \pi^- \mu^+ e^+$	$-0.2 \pm 7.9 \pm 0.6$	2.23	3.6	8.4
	$D^+ \rightarrow K^- e^+ e^+$	$-2.8 \pm 2.4 \pm 0.2$	2.67	3.1	0.9
	$D^+ \to K^- \mu^+ \mu^+$	$7.2\pm5.4\pm1.6$	0.80	37	10
	$D^+ \to K^- \mu^+ e^+$	$-11.6 \pm 4.0 \pm 3.1$	1.52	6.8	1.9
	$D_s^+ \rightarrow K^- e^+ e^+$	$2.3\pm7.9\pm3.3$	4.10	2.1	5.2
	$D_s^+ \to K^- \mu^+ \mu^+$	$-2.3\pm5.0\pm2.8$	0.98	5.3	13
	$D_s^+ \to K^- \mu^+ e^+$	$-14.0 \pm 8.4 \pm 2.0$	2.26	2.4	6.1
	$\Lambda_c^+ \to \overline{p}e^+e^+$	$-1.5 \pm 4.2 \pm 1.5$	5.14	0.4	2.7
	$\Lambda_c^+ \to \overline{p}\mu^+\mu^+$	$-0.0 \pm 2.1 \pm 0.6$	0.94	1.4	9.4
	$\Lambda_c^+ \rightarrow \overline{p}\mu^+ e^+$	$10.1 \pm 5.8 \pm 3.5$	2.50	2.3	16

No significant signals seen

- Establish 90% CL limits ranging from (0.9 x 10⁻⁶) (44 x 10⁻⁶)
- First limits on $\Lambda_c{}^{\scriptscriptstyle +}$ modes

May 30, 2012

The BABAR experiment

Large data samples corresponding to

- **432 fb⁻¹** Υ(**4S**) "onpeak"
- 53 fb⁻¹ "offpeak"
 - collected ~40MeV below $\Upsilon(4S)$ peak
- Also samples of "narrow Υ " events:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays

May 30, 2012

Searches for New Physics with BABAR

Steven Robertson

