THE DARK SIDE OF THE HIGGS BOSON

Pedro Schwaller

Argonne/UIC

Planck 2012

LHC: NO HIGGS (YET)

LHC: NO HIGGS (YET)

very light Higgs (~3 sigma)

heavy Higgs (Problem: EWPT)

LHC: NO HIGGS (YET)

very light Higgs (MSSM?)

heavy Higgs (Problem: EWPT)

no Higgs?

invisible Higgs (this talk!)

in Collaboration with I. Low, G. Shaughnessy, C. Wagner Phys.Rev. D85 (2012) 015009

OUTLINE

★Invisible Higgs & Higgs Portal Dark Matter

*Constraining the invisible Higgs width (after discovery!)

INVISIBLE HIGGS DECAYS

• Interpret the current exclusion as a lower bound on the invisible Higgs width

$$\sigma(pp \to h \to X_{\rm SM}) = \frac{\Gamma_{\rm SM}}{\Gamma_{\rm SM} + \Gamma_{\rm inv}} \sigma_{\rm SM}$$

• Requirement:

ATLAS Preliminary CLs Limits --- Observed 10^{0} $\pm 1\sigma$ $\pm 2\sigma$ 10^{-1} $\pm 2\sigma$ 10^{-1} $\pm 2\sigma$ 10^{-1} $10^{-2.3}$ fb⁻¹ $10^{-2.3}$

INVISIBLE HIGGS DECAYS

• Interpret the current exclusion as a lower bound on the invisible Higgs width

$$\sigma(pp \to h \to X_{\rm SM}) = \frac{\Gamma_{\rm SM}}{\Gamma_{\rm SM} + \Gamma_{\rm inv}} \sigma_{\rm SM}$$

• Requirement:

$$150 - 220 \text{ GeV}: \Gamma_{\text{inv}} \sim 0.5\Gamma_{\text{SM}}$$

$$300 - 450 \text{ GeV}: \Gamma_{\text{inv}} \sim \Gamma_{\text{SM}}$$
Summer 201
$$140 - 500 \text{ GeV}: \Gamma_{\text{inv}} \gtrsim \Gamma_{SM}$$
Full 2011

MODELS?

- Below WW threshold: very easy, just need to compete with $b\bar{b}$ channel (insert favorite model)
- For $m_h > 2m_W$: Need (relatively) light state with sizable coupling to Higgs boson
- Models: Fat Higgs, λ SUSY, Higgs Portal,...

expect other modifications of Higgs production/decay

MINIMALISTIC APPROACH

• Effective Higgs coupling to (Majorana) fermion

$$\mathcal{L} \supset m\bar{\psi}\psi + \frac{y_f}{\Lambda} \left(v + h/\sqrt{2}\right)^2 \bar{\psi}\psi$$

• Singlet scalar

$$\mathcal{L} \supset \frac{1}{2} m^2 S^{\dagger} S + \frac{1}{2} \lambda H^{\dagger} H S^{\dagger} S + \mathcal{L}_H + \mathcal{L}_S$$

• Not worry about UV completion etc. right now, only require that couplings are perturbative

DM CANDIDATE?

- "Higgs portal" DM
- E.g. Scalar: McDonald, 1994; many others Or fermion: Cirelli, Fornengo, Strumia, 2005 Lee, Kim, 2006
- Annihilation purely through Higgs:

$$(\sigma v)_{SS \to X_{\rm SM}} = \frac{2\lambda_s^2 v^2}{(4m_s^2 - m_h^2)^2 + m_h^2 \Gamma_h^2} \frac{\Gamma_{h \to \rm SM}(m_h = 2m_s)}{2m_s},$$

$$(\sigma v)_{\psi \psi \to X_{\rm SM}} = v_{\rm rel}^2 \frac{\tilde{\lambda}_f^2 m_f^2}{(4m_f^2 - m_h^2)^2 + m_h^2 \Gamma_h^2} \frac{\Gamma_{h \to \rm SM}(m_h = 2m_f)}{2m_f},$$

CONSTRAINTS

- Relic density: $\lambda, \tilde{\lambda} = 1$
 - scalar (red): better
 below WW treshold
 - fermion (blue): better above WW threshold

- Strategy:
 - lacksim pick Higgs mass m_h and dark matter mass $m_{
 m DM}$
 - determine coupling through relic density, then impose LHC, Xenon 100 constraints

HIGGS + DM SEARCH LIMITS

HIGGS + DM SEARCH LIMITS

scalar

fermion

Heavy Higgs allowed if relic density constraint is relaxed: large invisible width!

NOW WHAT?

- For $m_h > 200 \text{ GeV}$, hard to fully suppress all modes
- Eventually, we will see it in $h \to ZZ \to 4\ell$
- Reduced rate, might be due to
 - Increased total width, i.e. smaller ZZ, WW branchings
 - reduced production cross section

measure/constrain the width

HIGGS LINESHAPE

- Can be measured in $h \rightarrow ZZ \rightarrow 4\ell$
- Modified Breit-Wigner shape:

$$\frac{d\sigma_l}{d\sqrt{\hat{s}}} \sim A\sqrt{\hat{s}}^3 \frac{\sqrt{1 - 4x_Z}(1 - 4x_Z + 12x_Z^2)}{((\hat{s} - M_h^2)^2 + M_h^2\Gamma_h^2)}$$
$$x_Z = m_Z^2/\hat{s}$$

• Need to understand exp. resolution

RESOLUTION

- Electron/muon momentum uncertainty (CMS):
 - $\left(\frac{\Delta p}{p}\right)_{\mu} = 0.84\% \oplus 1\% \left(\frac{p_T}{100 \text{ GeV}}\right) \qquad \qquad \left(\frac{\Delta p}{p}\right)_E = 0.26\% \oplus \frac{2.8\%}{\sqrt{p/\text{GeV}}} \oplus \frac{12.4\%}{p/\text{GeV}}$
 - Generate zero width events, smear, fit to gaussian
 - Determine detector ''lineshape''
 - Exp. width grows with Higgs mass, $ee\mu\mu$ more accurate

RESOLUTION

- Electron/muon momentum uncertainty (CMS):
 - $\left(\frac{\Delta p}{p}\right)_{\mu} = 0.84\% \oplus 1\% \left(\frac{p_T}{100 \text{ GeV}}\right) \qquad \qquad \left(\frac{\Delta p}{p}\right)_E = 0.26\% \oplus \frac{2.8\%}{\sqrt{p/\text{GeV}}} \oplus \frac{12.4\%}{p/\text{GeV}}$
- Gaussian vs. Breit Wigner:
 - quite similar
 - fit convolution of Breit-Wigner and Gaussian

 \bullet width measurement possible down to $\Gamma\sim\sigma_{\rm exp}$, if we trust the detector simulation

- Comparable or better than VBF reach for Γ_{inv} VBF studied e.g. in Davoudiasl, Han, Logan 2005; ZH, WH in Eboli, Zeppenfeld, 2000
- Accurate probe of Higgs width with 300 fb⁻¹

WITH 50% REDUCED RATE

- Either reduced production cross section (purple) or
- Invisible decay, increased total width (blue)
- Small difference for $m_h < 250 \text{ GeV}$ otherwise just statistical effect and decreased S/B

CONCLUSIONS

- Intermediate mass Higgs bosons viable if they have a sizable invisible width
- Simple models compatible with Higgs portal dark matter strongly constrained now
- Width can be probed using the $h \rightarrow ZZ \rightarrow 4\ell$ lineshape, more sensitive than VBF for large of Higgs masses

if we find it...

Thanks for your attention!

Backup

CMS, HIGGS TO 4 LEPTON

LINESHAPE AT NLO

• using results of Papavassiliou & Pilaftsis

- Deviation small as long as width < 0.2 mass
- Sensitivity only at linear (muon) collider

ATLAS COMBINATION

MEASURING HIGGS PROPERTIES

- Understanding of modified Higgs cross section requires measurement of couplings to gauge bosons, fermions
- Combination of many channels, in particular also need VBF and associated Higgs production
- For us, a bit easier: What can we learn from the $h \to ZZ \to 4\ell$ lineshape? Low, PS, Shaughnessy, Wagner, 2011

Keung, PS, 2011

Dark Higgs

HIGGS DECAY (MAJORANA N1)

Keung, PS, 2011

 $M_1 = 45 \text{ GeV}$ $\Delta M = 20 \text{ GeV}$ $M_1 = 45 \text{ GeV}$ $M_2 \gg M_1$

THE ACTUAL 4G-HIGGS EXCLUSION

• With $M_1 \sim 50 \text{ GeV}$, resurrect 4G Higgs masses below 150 GeV

10⁻¹

100

200