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At LHC: elementary or composite?

The LHC is taking data:
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Figure 4: The combined upper limit on the Standard Model Higgs boson production cross-section divided

by the Standard Model expectation as a function of mH is indicated by the solid curve. This is a 95% C.L.

limit using the CLs method in the full mass range of this analysis (a) and in the low mass range (b). The

dotted curve shows the median expected limit in the absence of a signal and the green and yellow bands

indicate the corresponding 68% and 95% expected regions.
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W, B G

Ψ = (qL(3, 2)1/6, lL(1, 2)−1/2, uR(3, 1)2/3, dR(3, 1)−1/3, eR(1, 1)1) (1)

NGB’s in (Observed) Standard Model

! Gauge theory:

! Matter content (fermions):

! Longitudinal components of W and Z = NGB’s, WL

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Ψ

π
Σ(x) = exp

(

iσaπa(x)

v

)

(1, 2)1/2

G̃

Figure 1:
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Introduction:

Imagine the Higgs is Composite (Georgi, Kaplan et al.1984;     

                                                                      Agashe, Contino, Pomarol 2004)

Hierarchy Problem is solved :

Corrections to        screened above     \

       is IR-saturated

1/lHmH

mH

Supersymmetry Compositeness
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Why at the LHC? hierarchies

The hierarchy problem motivation:

?

from an effective field theory perspective:

Chapter 1
Setting the grounds: Electroweak Symmetry

Breaking

In this Chapter we briefly review the main features of the current theoretical model in particle
physics, the Standard Model (SM). We heavily base our discussion on the symmetries of its La-
grangian, presented in Section 1.1. Most of these symmetries are not exact, but the e�ects of
the (small) symmetry-breaking parameters can be systematically quantified. Others, in particu-
lar the electroweak (EW) gauge symmetries SU(2)L � U(1)Y , are spontaneously broken by the
vacuum. Such breaking is responsible for giving masses to the W gauge bosons as well as to the
SM fermions, a mechanism known as electroweak symmetry breaking (EWSB). However, in its
minimalist version, the breaking of the EW symmetries obstructs the extrapolation of the SM to
energies beyond the TeV, due to the loss of perturbative unitarity in the scattering of the massive
W ’s. We examine the stable ultraviolet (UV) completions of the minimal SM in Section 1.2: ei-
ther a scalar particle, the so-called Higgs boson, and Supersymmetry, or a new sector of strongly
interacting particles. To conclude, in Section 1.3 we present further motivations for extending
the SM.

1.1 The Electroweak Scale

1.1.1 The phenomenological Lagrangian and its Symmetries

The collection of particles and forces probed in high-energy experiments is described by a quantum
field theory whose Lagrangian is founded on a set of gauge symmetries associated to the color
and electroweak interactions,

GSM ⇥ SU(3)C � SU(2)L �U(1)Y , (1.1)
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What is composite? Higgs and top

G̃

Figure 1:

1 A

Λ ∼ TeV

1

assume there is a new strongly-interacting sector with, due 
to naturalness arguments, a compositeness scale:

does any of SM particles belong to this sector?

Technicolor: WL , ZLin “old” examples:
MSSM: none
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What is composite? Higgs and top

G̃

Figure 1:

1 A

Λ ∼ TeV

1

assume there is a new strongly-interacting sector with, due 
to naturalness arguments, a compositeness scale:

does any of SM particles belong to this sector?

Technicolor: WL , ZLin “old” examples:
MSSM: none

in “modern” scenarios:

Composite Higgs: H , top

Composite natural SUSY: H , top
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Ŝ(v2/Λ2)

mh ! Λ

cL,R

(q̄L,RγµqL,R)2

Λ2
, qR = uR, dR

pp → jj

mjj > 2 TeV

|y| < 2.8

LY = εi
uu

i
ROu + εi

dd
i
ROd + εi

qq
i
LOq

εi
u,d

εj
q

H

ui
R, di

R

qj
L

1

1 A
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Flavor constraints:

Anything else? light quarks
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partial compositeness does not seem enough...

, n-EDM
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, n-EDMcan be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⌅cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where
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Effective Lagrangian:

ν̄ ν̄

e− e−

Z

Figure 1:

1 A

Leff ∼ Λ2|H|2 + Yd q̄LHdR + . . . +
∑

i,d>4

ci

Λd−4
Oi

d

1

i) Extra powers of

where we only keep the dominant contributions corresponding to operators of dimension six, assum-

ing lepton and baryon number conservation. Among these operators it is important to distinguish

between two classes:

1. Operators involving extra powers of SM fields:

(q̄L⇤µqL)
2 , (q̄L⇤µqL)(H

†DµH) , ... (2)

2. Operators involving extra (covariant) derivatives:

q̄L⇤µqLD⇥F
µ⇥ , q̄LuRDµD

µH , ... (3)

The coe⌅cients ci in front of the first class of operators are parametrically proportional to the

square of a coupling of the SM fields to the BSM sector, and then they can be as large as ci � 16⌅2.

On the other hand, the coe⌅cients ci of the second class of operators should not contain couplings

and are expected to be of order one ci � O(1). This distinction is important when considering

strongly-coupled BSM with part of the SM fields arising as composite states of this new sector.

In this case � corresponds to the mass of the heavy resonances of the new strong sector whose

couplings, referred as g⇤, can be as large as � 4⌅. Hence operators of the first class with ci � g2⇤
give generically more significant modifications to SM physics than those of the second class [6, 8, 14].

At present we have important constraints on ci/�2 coming from precision measurements of SM

observables. Let us start considering those involving SM fermions. In the Appendix we give the

full list of independent operators involving quarks. Neglecting fermion masses (chiral limit), we

have that the impact of the dimension-six operators on SM physical processes can generically be

parametrized by two new types of interactions:

�⌅

�2
(⇧̄⇤µ⇧)

2 + ⇥⌅
v2

�2
Aµ⇧̄⇤

µ⇧ , (4)

where we denote collectively by Aµ = Wµ, Zµ, ... the SM gauge bosons, by ⇧ = uL, uR, ... the SM

fermions of a given chirality, v ⇥ 246 GeV is the Higgs vacuum expectation value (VEV), and �⌅

and ⇥⌅ measure the strength of the interactions. Since both types of interactions in Eq. (4) can

arise from operators of the first class (Eq. (2)), one has 0 < |�⌅|, |⇥⌅| � 16⌅2. The first term of

Eq. (4) gives contributions to four-fermion processes that scale as p2/�2 where p characterizes the
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at zero-momentum, and therefore these can only arise for the W and Z gauge boson and must be

proportional to the Higgs VEV.

In principle, very stringent constraints on new interactions of the type of Eq. (4) arise from

flavor physics [15]. It is not our purpose here to discuss them; they are very model dependent and

2

ii) Extra powers of

1 A

Fπ(p)

∂2/Λ2

1

1 A

Fπ(p)

∂2/Λ2

g2

ρ
ψ2/Λ2

≡ ψ2/f 2

1

coupling of the 
composite states

1 A

Fπ(p)

∂2/Λ2

g2

ρ
ψ2/Λ2

≡ ψ2/f 2

gρ=

1

1 A

Fπ(p)

∂2/Λ2

g2

ρ
ψ2/Λ2

≡ ψ2/f 2

gρ=

Λ ≡ gρf " f ⇔ gρ " 1

1

Approach to compositeness: EFT

cH = 1

gρ = 3

h

F 3TeV

χ =
N(χ < 3, mjj > 3 TeV)

N(χ < 16, mjj > 3 TeV)
(1)

mjj > 3 TeV

|y1 − y2| ! 2.8

0 < ε < 1

Y i,j
u,d ∼ εi

qε
j
u,d gρ

uR

qL

εR "
Yu

gρ

c

f 2
(q̄LγµqL)2 ,

c

f 2
(q̄LγµqL)(H†DµH)

2

cH = 1

gρ = 3

h

F 3TeV

χ =
N(χ < 3, mjj > 3 TeV)

N(χ < 16, mjj > 3 TeV)
(1)

mjj > 3 TeV

|y1 − y2| ! 2.8

0 < ε < 1

Y i,j
u,d ∼ εi

qε
j
u,d gρ

uR

qL

εR "
Yu

gρ

c

f 2
(q̄LγµqL)2 ,

c

f 2
(q̄LγµqL)(H†DµH)

c ∼ O(1)

2
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compositeness of the SM particles?
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How well the SM particles are tested?

First reaction,  one answers  “extremely well”

without lepton universality

χ2/Ndf = 32.6/27
mZ [GeV] 91.1876± 0.0021
ΓZ [GeV] 2.4952 ± 0.0023
σ0

h [nb] 41.541 ± 0.037
R0

e 20.804 ± 0.050
R0

µ 20.785 ± 0.033
R0

τ 20.764 ± 0.045

A0, e
FB 0.0145 ± 0.0025

A0, µ
FB 0.0169 ± 0.0013

A0, τ
FB 0.0188 ± 0.0017

without lepton universality

Γhad [MeV] 1745.8 ±2.7
Γee [MeV] 83.92±0.12
Γµµ [MeV] 83.99±0.18
Γττ [MeV] 84.08±0.22

√
s Average

(GeV) Quantity value SM ∆

130 σ(qq) 82.1±2.2 82.8 -0.3
130 σ(µ+µ−) 8.62±0.68 8.44 -0.33
130 σ(τ+τ−) 9.02±0.93 8.44 -0.11
130 AFB(µ+µ−) 0.694±0.060 0.705 0.012
130 AFB(τ+τ−) 0.663±0.076 0.704 0.012
136 σ(qq) 66.7±2.0 66.6 -0.2
136 σ(µ+µ−) 8.27±0.67 7.28 -0.28
136 σ(τ+τ−) 7.078±0.820 7.279 -0.091
136 AFB(µ+µ−) 0.708±0.060 0.684 0.013
136 AFB(τ+τ−) 0.753±0.088 0.683 0.014
161 σ(qq) 37.0±1.1 35.2 -0.1
161 σ(µ+µ−) 4.61±0.36 4.61 -0.18
161 σ(τ+τ−) 5.67±0.54 4.61 -0.06
161 AFB(µ+µ−) 0.538±0.067 0.609 0.017
161 AFB(τ+τ−) 0.646±0.077 0.609 0.016
172 σ(qq) 29.23±0.99 28.74 -0.12
172 σ(µ+µ−) 3.57±0.32 3.95 -0.16
172 σ(τ+τ−) 4.01±0.45 3.95 -0.05
172 AFB(µ+µ−) 0.675±0.077 0.591 0.018
172 AFB(τ+τ−) 0.342±0.094 0.591 0.017
183 σ(qq) 24.59±0.42 24.20 -0.11
183 σ(µ+µ−) 3.49±0.15 3.45 -0.14
183 σ(τ+τ−) 3.37±0.17 3.45 -0.05
183 AFB(µ+µ−) 0.559±0.035 0.576 0.018
183 AFB(τ+τ−) 0.608±0.045 0.576 0.018
189 σ(qq) 22.47±0.24 22.156 -0.101
189 σ(µ+µ−) 3.123±0.076 3.207 -0.131
189 σ(τ+τ−) 3.20±0.10 3.20 -0.048
189 AFB(µ+µ−) 0.569±0.021 0.569 0.019
189 AFB(τ+τ−) 0.596±0.026 0.569 0.018

√
s Average

(GeV) Quantity value SM ∆

192 σ(qq) 22.05±0.53 21.24 -0.10
192 σ(µ+µ−) 2.92±0.18 3.10 -0.13
192 σ(τ+τ−) 2.81±0.23 3.10 -0.05
192 AFB(µ+µ−) 0.553±0.051 0.566 0.019
192 AFB(τ+τ−) 0.615±0.069 0.566 0.019
196 σ(qq) 20.53±0.34 20.13 -0.09
196 σ(µ+µ−) 2.94±0.11 2.96 -0.12
196 σ(τ+τ−) 2.94±0.14 2.96 -0.05
196 AFB(µ+µ−) 0.581±0.031 0.562 0.019
196 AFB(τ+τ−) 0.505±0.044 0.562 0.019
200 σ(qq) 19.25±0.32 19.09 -0.09
200 σ(µ+µ−) 3.02±0.11 2.83 -0.12
200 σ(τ+τ−) 2.90±0.14 2.83 -0.04
200 AFB(µ+µ−) 0.524±0.031 0.558 0.019
200 AFB(τ+τ−) 0.539±0.042 0.558 0.019
202 σ(qq) 19.07±0.44 18.57 -0.09
202 σ(µ+µ−) 2.58±0.14 2.77 -0.12
202 σ(τ+τ−) 2.79±0.20 2.77 -0.04
202 AFB(µ+µ−) 0.547±0.047 0.556 0.020
202 AFB(τ+τ−) 0.589±0.059 0.556 0.019
205 σ(qq) 18.17±0.31 17.81 -0.09
205 σ(µ+µ−) 2.45±0.10 2.67 -0.11
205 σ(τ+τ−) 2.78±0.14 2.67 -0.042
205 AFB(µ+µ−) 0.565±0.035 0.553 0.020
205 AFB(τ+τ−) 0.571±0.042 0.553 0.019
207 σ(qq) 17.49±0.26 17.42 -0.08
207 σ(µ+µ−) 2.595±0.088 2.623 -0.111
207 σ(τ+τ−) 2.53±0.11 2.62 -0.04
207 AFB(µ+µ−) 0.542±0.027 0.552 0.020
207 AFB(τ+τ−) 0.564±0.037 0.551 0.019

Extensive LEP, SLAC LC,  Tevatron,...  legacy:

√
s WW cross-section (pb) χ2/d.o.f.

(GeV) ALEPH DELPHI L3 OPAL LEP

161.3 4.23 ± 0.75∗ 3.67 + 0.99 ∗
− 0.87 2.89 + 0.82 ∗

− 0.71 3.62 + 0.94 ∗
− 0.84 3.69 ± 0.45 ∗ } 1.3 / 3

172.1 11.7 ± 1.3 ∗ 11.6 ± 1.4 ∗ 12.3 ± 1.4 ∗ 12.3 ± 1.3 ∗ 12.0 ± 0.7 ∗ } 0.22/ 3

182.7 15.90 ± 0.63∗ 16.07 ± 0.70∗ 16.53 ± 0.72∗ 15.43 ± 0.66∗ 15.89 ± 0.35 ∗






























































26.4/24

188.6 15.76 ± 0.36∗ 16.09 ± 0.42∗ 16.17 ± 0.41∗ 16.30 ± 0.39∗ 16.03 ± 0.21 ∗

191.6 17.10 ± 0.90 ∗ 16.64 ± 1.00∗ 16.11 ± 0.92 ∗ 16.60 ± 0.99 16.56 ± 0.48

195.5 16.61 ± 0.54 ∗ 17.04 ± 0.60∗ 16.22 ± 0.57 ∗ 18.59 ± 0.75 16.90 ± 0.31

199.5 16.90 ± 0.52 ∗ 17.39 ± 0.57∗ 16.49 ± 0.58 ∗ 16.32 ± 0.67 16.75 ± 0.30

201.6 16.65 ± 0.71 ∗ 17.37 ± 0.82∗ 16.01 ± 0.84 ∗ 18.48 ± 0.92 17.00 ± 0.41

204.9 16.79 ± 0.54 ∗ 17.56 ± 0.59∗ 17.00 ± 0.60 ∗ 15.97 ± 0.64 16.78 ± 0.31

206.6 17.36 ± 0.43 ∗ 16.35 ± 0.47∗ 17.33 ± 0.47 ∗ 17.77 ± 0.57 17.13 ± 0.25

Lepton Lepton

non–universality universality

Experiment B(W → eνe) B(W → µνµ) B(W → τντ ) B(W → hadrons)

[%] [%] [%] [%]

ALEPH 10.81 ± 0.29∗ 10.91 ± 0.26∗ 11.15 ± 0.38∗ 67.15 ± 0.40∗

DELPHI 10.55 ± 0.34∗ 10.65 ± 0.27∗ 11.46 ± 0.43∗ 67.45 ± 0.48∗

L3 10.78 ± 0.32∗ 10.03 ± 0.31∗ 11.89 ± 0.45∗ 67.50 ± 0.52∗

OPAL 10.40 ± 0.35 10.61 ± 0.35 11.18 ± 0.48 67.91 ± 0.61

LEP 10.66 ± 0.17 10.60 ± 0.15 11.41 ± 0.22 67.49 ± 0.28

χ2/d.o.f. 6.8/9 15.0/11

% of δmW (MeV)

Background W → eν data mT fit pT fit p/T
fit

W → τν 0.93 ± 0.03 2 2 2

Hadronic jets 0.25 ± 0.15 8 9 7

Z/γ∗ → ee 0.24 ± 0.01 1 1 0

Total 1.42 ± 0.15 8 9 7

% of δmW (MeV)

Background W → µν data mT fit pT fit p/T
fit

Z/γ∗ → µµ 6.6 ± 0.3 6 11 5

W → τν 0.89 ± 0.02 1 7 8

Decays in flight 0.3 ± 0.2 5 13 3

Hadronic jets 0.1 ± 0.1 2 3 4

Cosmic rays 0.05 ± 0.05 2 2 1

Total 7.9 ± 0.4 9 19 11

from LEP, SLAC, Tevatron,...

pre-LHC

we know a lot about the SM!
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FIG. 1: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charmless

semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral meson systems,

and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK (γ). Taken from

[6].

follow this approach in Sect. V and VI in two well-motivated SM extensions. In this and the next

section we follow the second strategy, which is less predictive but also more general.

Assuming the new degrees to be heavier than SM fields, we can integrate them out and describe

NP effects by means of a generalization of the Fermi Theory. The SM Lagrangian becomes the

renormalizable part of a more general local Lagrangian which includes an infinite tower of operators

with dimension d > 4, constructed in terms of SM fields, suppressed by inverse powers of an effective

scale Λ > MW :

Leff = LSM +
∑ c(d)i

Λ(d−4)
O(d)

i (SM fields). (3.1)

This general bottom-up approach allows us to analyse all realistic extensions of the SM in terms of a

limited number of parameters (the coefficients of the higher-dimensional operators). The drawback

of this method is the impossibility to establish correlations of NP effects at low and high energies:

the scale Λ defines the cut-off of the effective theory. However, correlations among different low-
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⌅cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them
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follow this approach in Sect. V and VI in two well-motivated SM extensions. In this and the next

section we follow the second strategy, which is less predictive but also more general.
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elementary in what their couplings to W, Z concerns:
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LEP:

Having solved the flavor problem the main constraints arise from precision measurements and

compositeness bounds to which we now turn.

3.1.1 Modified Couplings

Contrary to the anarchic scenario where only the mixing of bL is large, some of the light quarks have

sizable mixing due to the flavor symmetry which relates their mixing to the ones of third generation

quarks. This leads to a modification of the couplings of the light generations which like the one of the

b is very constrained.

The hadronic width and the b partial width of the Z are measured with per mille precision at

LEP [25]. Experimentally

Rb =
�(Z ⇤ bb̄)

�(Z ⇤ qq̄)
= .21629± .00066 (3.4)

The SM value is 1⌅ below the LEP measurement. From eq. (2.10) it follows that the mixing reduces

the coupling at least for the simple choices of representations that we are considering. As a conse-

quence, Rb constrains �gZ�bLb̄L
/gZ�bLb̄L

to be less than 2.5 per mille allowing a 2⌅ deviation from

the experimental value. As explained in section 2.1, in our models there is no shift of the couplings

due to the up left mixing due to the Z2 symmetry. The bound on Rb is then easily satisfied since the

shift of the couplings in controlled by ⇥Ld which is naturally small. In general all our bounds will arise

from the up sector where sizable shifts are possible.

For the total hadronic width we have [25],

Rh =
�(Z ⇤ qq̄)

�(Z ⇤ µµ̄)
= 20.767± .025 (3.5)

which is again 1⌅ above the SM value. At tree level in the SM we have,

�(Z ⇤ q̄q) ⌅ 2(g2Lu + g2Ru) + 3(g2Ld + g2Rd). (3.6)

While the mixings in the down sector are naturally small some of the light quark in the up sector will

have large mixings in order to reproduce the top mass and these are strongly constrained by Rh. The

relative change in the hadronic width due to a common variation of the couplings in the up and down

sector is,

�Rh

Rh
=

4gLu�gLu + 4gRu�gRu + 6gLd�gLd + 6gRd�gRd

2(g2Lu + g2Ru) + 3(g2Ld + g2Rd)

⇥ .57
�gLu
gLu

+ .11
�gRu

gRu
+ 1.28

�gLd
gLd

+ .04
�gRd

gRd
(3.7)

Since as before the corrections to the couplings reduce the SM result allowing for a 2⌅ deviation from

the experimental value we find,
�gLu
gLu

< .002 (3.8)
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KLOE:

3) Similarly for qL = left-handed quarks:

– 7–

where the first error is the uncertainty from |Vud|2 and the

second error is the uncertainty from |Vus|2.

CKM Unitarity Constraints

The current good experimental agreement with unitarity,

|Vud|2+ |Vus|2+ |Vub|2 = 0.9999(6), provides strong confirmation

of Standard Model radiative corrections (which range between

3-4% depending on the nucleus used) at better than the 50 sigma

level [48]. In addition, it implies constraints on “New Physics”

effects at both the tree and quantum loop levels. Those effects

could be in the form of contributions to nuclear beta decays,

K decays and/or muon decays, with the last of these providing

normalization via the muon lifetime [49], which is used to

obtain the Fermi constant, Gµ = 1.166371(6)× 10−5GeV−2.

In the following sections, we illustrate the implications of

CKM unitarity for (1) exotic muon decays [50]( beyond ordinary

muon decay µ+ → e+νeν̄µ) and (2) new heavy quark mixing

VuD [51]. Other examples in the literature [52,53] include

Zχ boson quantum loop effects, supersymmetry, leptoquarks,

compositeness etc.

Exotic Muon Decays

If additional lepton flavor violating decays such as µ+ →
e+ν̄eνµ (wrong neutrinos) occur, they would cause confusion in

searches for neutrino oscillations at, for example, muon storage

rings/neutrino factories or other neutrino sources from muon

decays. Calling the rate for all such decays Γ(exotic µ decays),

they should be subtracted before the extraction of Gµ and

normalization of the CKM matrix. Since that is not done and

unitarity works, one has (at one-sided 95% CL)

|Vud|2 + |Vus|2 + |Vub|2 = 1 − BR(exotic µ decays) ≥ 0.9989

(19)

or

BR(exotic µ decays) < 0.001 . (20)

This bound is a factor of 10 better than the direct experimental

bound on µ+ → e+ν̄eνµ.

New Heavy Quark Mixing

July 30, 2010 14:34
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(ēL,RγµeL,R)($̄L,Rγµ$L,R)

f 2

cL

(q̄LγµqL)(H†DµH)

f 2

f/
√

cL ! 3 − 4 TeV

cL

(q̄LγµqL)2

f 2

1

1 A

Fπ(p)

∂2/Λ2

g2

ρψ
2/Λ2 ≡ ψ2/f 2

gρ=

Λ ≡ gρf " f ⇔ gρ " 1

cLL

(q̄i
Lγµq

j
L)2

f 2

cLR

(q̄i
Lqj

R)(q̄i
Rqj

L)

f 2

f/
√

c ! 102−5 TeV

cL

($̄Lγµ$L)(H†DµH)

f 2

cR
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couplings to the Z are very small:

LEP:

Having solved the flavor problem the main constraints arise from precision measurements and

compositeness bounds to which we now turn.

3.1.1 Modified Couplings

Contrary to the anarchic scenario where only the mixing of bL is large, some of the light quarks have

sizable mixing due to the flavor symmetry which relates their mixing to the ones of third generation

quarks. This leads to a modification of the couplings of the light generations which like the one of the

b is very constrained.

The hadronic width and the b partial width of the Z are measured with per mille precision at

LEP [25]. Experimentally

Rb =
�(Z ⇤ bb̄)

�(Z ⇤ qq̄)
= .21629± .00066 (3.4)

The SM value is 1⌅ below the LEP measurement. From eq. (2.10) it follows that the mixing reduces

the coupling at least for the simple choices of representations that we are considering. As a conse-

quence, Rb constrains �gZ�bLb̄L
/gZ�bLb̄L

to be less than 2.5 per mille allowing a 2⌅ deviation from

the experimental value. As explained in section 2.1, in our models there is no shift of the couplings

due to the up left mixing due to the Z2 symmetry. The bound on Rb is then easily satisfied since the

shift of the couplings in controlled by ⇥Ld which is naturally small. In general all our bounds will arise

from the up sector where sizable shifts are possible.

For the total hadronic width we have [25],

Rh =
�(Z ⇤ qq̄)

�(Z ⇤ µµ̄)
= 20.767± .025 (3.5)

which is again 1⌅ above the SM value. At tree level in the SM we have,

�(Z ⇤ q̄q) ⌅ 2(g2Lu + g2Ru) + 3(g2Ld + g2Rd). (3.6)

While the mixings in the down sector are naturally small some of the light quark in the up sector will

have large mixings in order to reproduce the top mass and these are strongly constrained by Rh. The

relative change in the hadronic width due to a common variation of the couplings in the up and down

sector is,

�Rh

Rh
=

4gLu�gLu + 4gRu�gRu + 6gLd�gLd + 6gRd�gRd

2(g2Lu + g2Ru) + 3(g2Ld + g2Rd)

⇥ .57
�gLu
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�gRu
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+ 1.28

�gLd
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+ .04
�gRd

gRd
(3.7)

Since as before the corrections to the couplings reduce the SM result allowing for a 2⌅ deviation from

the experimental value we find,
�gLu
gLu

< .002 (3.8)
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where the sum is to be done over all the light quarks. The

forward-backward asymmetry at LEP, on the other hand, is

given by

AFB
b !!s"mZ

!
3

4
AlAb !3"

with

Ab"
! ḡL

b "2"! ḡR
b "2

! ḡL
b "2#! ḡR

b "2

Al"
!gL

l "2"!gR
l "2

!gL
l "2#!gR

l "2
. !4"

Small corrections also accrue to the above observable from a

non-zero b-quark and c-quark masses as well as QCD, elec-

troweak and electromagnetic vertex corrections #4–6$.
Whereas the observed values are

Rb!obs"!0.21646$0.00065, AFB
b !obs"!0.0990$0.0017,

!5"

the SM expectations for a top quark mass of 174.3 GeV and

a Higgs boson mass close to its present experimental bound,

are Rb(SM )"0.2157 and AFB
b (SM )"0.1036. Thus, while

the observed value for Rb is consistent with the SM, that for

AFB
b shows, as emphasized before, a relatively large devia-

tion from the predicted value. This relatively large discrep-

ancy may be reduced by choosing larger Higgs boson

masses, although only at the cost of worsening the agreement

between theory and experiment for other observables, most

notably the lepton asymmetries.

It has been noted, for example in Ref. #7$, that the overall
consistency of the SM with the data improves if we dismiss

altogether the measurement of the forward-backward asym-

metry. Such an act of exclusion leads to a preference for new

physics scenarios that produce a negative shift in the oblique

electroweak parameter S #8$, an example being provided by
supersymmetric theories with light sleptons #7$. We, instead,
choose to consider all experimental data on equal footing.

In this article, we investigate a possible way of resolving

the disagreement between the hadronic and leptonic asym-

metries through the introduction of new quark degrees of

freedom at the weak scale thereby inducing non-trivial mix-

ings with the third generation of quarks. In Sec. II, we ex-

amine the experimental status in order to determine the nec-

essary modifications in the couplings of the right- and left-

handed bottom quarks. As the required modification in the

right-handed sector turns out to be too large to be obtainable

via radiative corrections, we investigate, in Sec. III, the pos-

sibility that tree-level mixing of the bottom quark with exotic

quarks might be responsible for the observed deviations. All

possible assignments for such quarks are examined for their

effects on the precision electroweak observables and the two

simplest choices identified. The fits to the data for the two

cases are presented in Secs. IV and V respectively. Other

phenomenological consequences, including the question of

unification, will be investigated in Secs. VI and VII. We

reserve Sec. VIII for our conclusions.

II. BOTTOM QUARK COUPLINGS CONFRONT DATA

Let us assume a purely phenomenological stance and at-

tempt to determine ḡL ,R
b from the data. Even in the limit of

infinite precision, the ellipse and the straight lines represent-

ing the solution spaces for Eqs. !2",!3" intersect at four points
with the coordinates given by

! ḡL
b , ḡR

b "%#$0.992gL
b!SM",$1.26gR

b !SM"$ , !6"

where we indicate on the right the approximate values of the

left- and right-handed couplings necessary to fit the bottom-

quark production data at the Z peak.1 Clearly, no experiment

performed at the Z peak can reduce the degeneracy any fur-

ther. Off the Z peak though, the photon-mediated diagram

becomes important thereby affecting the forward-backward

asymmetry of the bottom-quark. Such data, thus, could dis-

criminate amongst the four solutions described above. The

asymmetry is easy to calculate and in Fig. 1, we plot the

same as a function of the center of mass energy of the e#e"

system for each of the solutions2 in Eq. !6". It is quite appar-
ent that the two solutions with ḡL

b%"gL
b(SM) can be sum-

marily discarded. Interestingly enough, the data does not

readily discriminate between the two remaining solutions.

This, though, is not unexpected as !gR
b !%!gL

b ! within the SM.

1A similar analysis, although restricted to modifying the magni-

tude but not the sign of the couplings, was performed in Ref. #9$.
2Had we instead held the magnitudes of the couplings to their SM

values, the resulting curves would have been barely distinguishable

from those in Fig. 1.

FIG. 1. The forward-backward asymmetry for the b quark as a

function of !s for the four solutions of Eq. !6". The signs in the

parentheses refer to those for ( ḡL
b , ḡR

b ) in the same order as in Eq.

!6" with (# ,#) being SM-like. The experimental data correspond
to the measurements reported in Refs. #10–20$.
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1 A

Fπ(p)

∂2/Λ2

g2
ρψ

2/Λ2 ≡ ψ2/f 2

gρ=

Λ ≡ gρf " f ⇔ gρ " 1

cLL

(q̄i
Lγµq

j
L)2

f 2

cLR

(q̄i
Lqj

R)(q̄i
Rqj

L)

f 2

f/
√

c ! 102−5 TeV

cL

($̄Lγµ$L)(H†DµH)

f 2

cR

(ēRγµeR)(H†DµH)

f 2

f/
√

cL,R ! 3 − 4 TeV

cL,R

(ēL,RγµeL,R)($̄L,Rγµ$L,R)

f 2

c(q)
R

(q̄RγµqR)(H†DµH)

f 2
, q = u, d

f/
√

cL ! 1 TeV

cL

(q̄LγµqL)2

f 2

gZdRdR
= Qd sin2 θW ∼ 0.08

1

gdR
= Qd sin2 θW ∼ 0.08

f/
√

c(u)
R ! 1 TeV

f/
√

c(d)
R ! 0.5 TeV

0 "
δgbR

2

gdR
= Qd sin2 θW ∼ 0.08

f/
√

c(u)
R ! 1 TeV

f/
√

c(d)
R ! 0.5 TeV

0 "
δgbR

2

gdR
= Qd sin2 θW ∼ 0.08

f/
√

c(u)
R ! 1 TeV

f/
√

c(d)
R ! 0.5 TeV

0 "
δgbR

2

gdR
= Qd sin2 θW ∼ 0.08

f/
√

c(u)
R ! 1 TeV

f/
√

c(d)
R ! 0.5 TeV

0 " δgbR
" 0.2

2

pre-LHC: RH-quarks not well tested
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LHC updates
what we are already learning from LHC about 

the compositeness of the SM fermions

RH quarks and LH quarks (if Higgs not)
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LHC updates

the easiest thing to start with:

if quarks are composite states

1 A

Ŝ(v2/Λ2)

mh ! Λ

cL,R

(q̄L,RγµqL,R)2

Λ2
, qR = uR, dR

1

flavor universal

strong dijet production

1 A

Ŝ(v2/Λ2)

mh ! Λ

cL,R

(q̄L,RγµqL,R)2

Λ2
, qR = uR, dR

pp → jj

1

highly energetic:

central:

√
s = 14 TeV

3σ

cyyf

|H|2ψ̄LHψR

f 2

uu → uu

ud → ud

dd → dd

χ = e|y1−y2|

cL,R ! 16π2

×
√

ci ! 4π

2

cH = 1

gρ = 3

h

F 3TeV

χ =
N(χ < 3, mjj > 3 TeV)

N(χ < 16, mjj > 3 TeV)
(1)

mjj > 3 TeV

|y1 − y2| ! 1.1

2

cH = 1

gρ = 3

h

F 3TeV

χ =
N(χ < 3, mjj > 3 TeV)

N(χ < 16, mjj > 3 TeV)
(1)

mjj > 3 TeV

|y1 − y2| ! 1.1

2
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dijets at LHC

Independent 4-quark operators:

We classify the operators according to their expected suppression. First, we show the list of

independent operators unsuppressed by Yukawa couplings (those generated in the massless quark

limit). Following the discussion of section 2, we separate these operators as those of first class and

second class, Eq. (2) and Eq. (3) respectively. We finally show the list of independent operators

suppressed by Yuwaka couplings.

A.1 First class operators

A.1.1 Four-quark operators

O(1)
dd = (d̄R�

µdR)(d̄R�µdR)

O(1)
ud = (ūR�

µuR)(d̄R�µdR) O(1)
td = (t̄R�

µtR)(d̄R�µdR)

O(1)
uu = (ūR�

µuR)(ūR�µuR) O(1)
ut = (ūR�

µuR)(t̄R�µtR)

O(1)
tt = (t̄R�

µtR)(t̄R�µtR)

O(1)
qu = (q̄L�

µqL)(ūR�µuR) O(1)
qt = (q̄L�

µqL)(t̄R�µtR)

O(1)
qd = (q̄L�

µqL)(d̄R�µdR)

O(1)
qq = (q̄L�

µqL)(q̄L�µqL)

O(3W )
qq = (q̄L�

µ⇥ IqL)(q̄L�µ⇥
IqL)

O(8F )
qq = (q̄L�

µT P qL)(q̄L�µT
P qL)

O(8)
uu = (ūR�

µTAuR)(ūR�µT
AuR) O(8)

ut = (ūR�
µTAuR)(t̄R�µT

AtR)

O(8)
dd = (d̄R�

µTAdR)(d̄R�µT
AdR)

O(8)
ud = (ūR�

µTAuR)(d̄R�µT
AdR) O(8)

td = (t̄R�
µTAtR)(d̄R�µT

AdR)

O(8C)
qq = (q̄L�

µTAqL)(q̄L�µT
AqL)

O(8)
qu = (q̄L�

µTAqL)(ūR�µT
AuR) O(8)

qt = (q̄L�
µTAqL)(t̄R�µT

AtR)

O(8)
qd = (q̄L�

µTAqL)(d̄R�µT
AdR) (30)

For physics involving only the first family quarks, that as explained in section 3 mainly corresponds

to the LHC dijet data pp ⇥ jj, we can reduce the above set of four-quark operators to the set of

Eq. (8). In this reduction, we have

c(1)uu +
1

3
c(8)uu ⇥ c(1)uu

c(1)dd +
1

3
c(8)dd ⇥ c(1)dd

c(1)qq � 1

12
c(3W )
qq +

1

3
c(8F )
qq ⇥ c(1)qq

c(8C)
qq + c(3W )

qq ⇥ c(8)qq (31)

15

full list

but many of them are not relevant for LHC dijets

18Wednesday, 30 May 12



dijets at LHC

Relevant 4-quark operators:

significantly. Similar conclusions have been recently reached in Ref. [19].

For completeness, we comment on chirality-flip processes that are sensitive to fermion masses.

For m⇤ = Y⇤v ⇤= 0, two new types of interactions can be added to Eq. (4):

�⇤
m⇤

�2
F µ⇥⌅̄⇤µ⇥⌅ + ⇥⇤

Y 2
⇤

�2
(⌅̄⌅)2 , (6)

where �⇤ and ⇥⇤ are coe⇧cients of order one. Concerning the first one, Re[�⇤] and Im[�⇤] give a

contribution to the magnetic and electric dipole moment respectively. Only electric dipole moments

give important constraints on BSM sectors, but they can be avoided by demanding CP-invariance

in the BSM. Moreover, in most of the BSM they arise at the one-loop level. The second interaction

in Eq. (6) corresponds to new four-fermion interactions, but suppressed with respect to those of

Eq. (4) by Yukawa couplings, hence we will not consider them in this work.

Let us also mention that bounds on the interactions Eq. (4) can also constrain BSM contributions

to the self-energies of the SM gauge bosons. These e⇥ects can be parametrized by five quantities
⇤S, ⇤T , W , Y and Z [20]. The first two, ⇤S, ⇤T , are proportional to v2/�2 and find their best bound

from LEP and Tevatron data. The W and Y parameters, that measure the compositeness of the

Wµ, Zµ and photons, are also bounded by LEP data at the per-mille level, but since these e⇥ects

grow with the momenta as p2/�2, we can expect LHC to improve the bounds. Also at the LHC the

best bound on the Z-parameter, that measures the compositeness of the gluon, can be obtained.

We then conclude that BSM physics generating four-quark interactions are not severely con-

strained by the pre-LHC data. Especially interesting BSM scenarios that contribute to this type of

interactions are theories of composite quarks, either composite uR and dR (and Higgs), composite

qL (if the Higgs is elementary), or composite gluons. Below we will show how dijets at the LHC

constrain these scenarios.

3 Dijets at the LHC

The study at the LHC of the angular distributions of dijets in the process pp � jj has been shown

to be a powerful tool to constrain the size of four-quark contact interactions [2, 3, 4, 5]. Here we will

follow these analyses to put constraints on all possible four-quark interactions. Out of the complete

list of operators in A.1.1, only those involving the first family of quarks, up and down, are relevant

for our analysis. The reason is the following. In pp � jj the dominant contributions at high dijet

invariant-mass mjj arise from valence-quarks initial states, i .e., uu, dd, du, being uū or uc initial

state processes very suppressed. For example, in the SM we have

�
⇤(uū � uū)

⇤(uu � uu)

⇥mjj>2TeV

SM

⇥ 0.04 ,

�
⇤(uc � uc)

⇤(uu � uu)

⇥mjj>2TeV

SM

⇥ 0.01 . (7)

4

Furthermore, processes with other families in the final states but having u, d in the initial state,

such as uu ⇥ ss, cc, do not arise from the four-quark operators of A.1.1 due to the flavor symmetry

GF . We are then led to consider partonic processes involving only first family quarks, uu ⇥ uu,

dd ⇥ dd and ud ⇥ ud, that allow us to reduce the set of operators of Eq. (30) to

O(1)
uu = (ūR⇥

µuR)(ūR⇥µuR)

O(1)
dd = (d̄R⇥

µdR)(d̄R⇥µdR)

O(1)
ud = (ūR⇥

µuR)(d̄R⇥µdR)

O(8)
ud = (ūR⇥

µTAuR)(d̄R⇥µT
AdR)

O(1)
qq = (q̄L⇥

µqL)(q̄L⇥µqL)

O(8)
qq = (q̄L⇥

µTAqL)(q̄L⇥µT
AqL)

O(1)
qu = (q̄L⇥

µqL)(ūR⇥µuR)

O(8)
qu = (q̄L⇥

µTAqL)(ūR⇥µT
AuR)

O(1)
qd = (q̄L⇥

µqL)(d̄R⇥µdR)

O(8)
qd = (q̄L⇥

µTAqL)(d̄R⇥µT
AdR) (8)

where here we do not sum over flavor indices and from now on qL = (uL, dL).

At the partonic level the SM di⇥erential cross section of pp ⇥ jj is dominated by QCD interac-

tions [21]:

ŝ2

⇤�2
s

d⌅

dt̂
(qiqi ⇥ qiqi)SM =

4

9

ŝ2 + û2

t̂2
+

4

9

ŝ2 + t̂2

û2
� 8

27

ŝ2

t̂û
, (qi = u, d)

ŝ2

⇤�2
s

d⌅

dt̂
(ud ⇥ ud)SM =

4

9

ŝ2 + û2

t̂2
,

ŝ2

⇤�2
s

d⌅

dt̂
(gqi ⇥ gqi)SM = (ŝ2 + û2)

�
1

t̂2
� 4

9

1

ŝû

⇥
,

ŝ2

⇤�2
s

d⌅

dt̂
(gg ⇥ gg)SM =

9

2

�
3� t̂û

ŝ2
� ŝû

t̂2
� ŝt̂

û2

⇥
,

ŝ2

⇤�2
s

d⌅

dt̂
(gg ⇥ qiq̄i)SM =

3

8
(t̂2 + û2)

�
4

9

1

t̂û
� 1

ŝ2

⇥
, (9)

where ŝ, t̂ and û are the partonic Mandelstam variables, and we are working in the massless quark

limit. Contributions from the operators of Eq. (8) give

d⌅

dt̂
(qiqi ⇥ qiqi)BSM = � 8�s

27�2

⇤
Aqi

1

ŝ

t̂û
� Aqi

2

�
û2

t̂
+

t̂2

û

⇥
1

ŝ2

⌅
+

4

27⇤�4

⇤
Bqi

1 +Bqi
2

û2 + t̂2

ŝ2

⌅
,

d⌅

dt̂
(ud ⇥ ud)BSM =

2�s

9�2

⇤
A3

1

t̂
+ A4

û2

ŝ2t̂

⌅
+

1

36⇤�4

⇤
B3 +B4

û2

ŝ2

⌅
, (10)

5

because of our flavor assumption, jj ≠ ss, cc, ...

at the LHC at high invariant masses: pp = uu, ud, dd√
s = 14 TeV

3σ

cyyf

|H|2ψ̄LHψR

f 2

uu → uu

ud → ud

dd → dd

2
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dijets at LHC

Angular distributions and exp. results:

1 1.5 2 3 5 7 10 15 20 30
0

0.05

0.1

0.15

0.2

⌅

1

⇧
d⇧
d⌅

—— SM

�� ⇤ ⇥ 1 TeV

⌃ Data

Figure 1: Dijet di⇥erential cross section as a function of � for mjj > 2 TeV at the LHC with
⌥
s = 7 TeV. The

QCD contribution is shown in solid red line, while the green dashed line includes the contribution from the operator

O(8)
qq with c(8)qq = �0.5 and � = 1 TeV.

where

Au,d
1 =

1

2
c(8)qq +

3

2
(c(1)uu,dd + c(1)qq ) ,

Au,d
2 =

3

4
c(8)qu,qd ,

A3 =
1

2
(2c(8)qq + c(8)ud ) ,

A4 =
1

2
(c(8)qu + c(8)qd ) ,

Bu,d
1 = (Au,d

1 )2 +
1

16

�
c(8)qq + 3(c(1)qq � c(1)uu,dd)

⇥2
,

Bu,d
2 =

3

16
(c(8)qu,qd)

2 +
27

32
(c(1)qu,qd)

2 ,

B3 = A2
3 +

1

4
(2c(8)qq � c(8)ud )

2 +
9

8
(2c(1)qq + c(1)ud )

2 +
9

8
(2c(1)qq � c(1)ud )

2 ,

B4 = A2
4 +

1

4
(c(8)qu � c(8)qd )

2 +
9

8
(c(1)qu + c(1)qd )

2 +
9

8
(c(1)qu � c(1)qd )

2 , (11)

being the coe⌅cients ci defined according to Eq. (1). This extends the results of [22].

As compared to the SM contribution Eq. (9), the BSM contribution Eq. (10) is enhanced at large

ŝ and large CM scattering angle �⇥, or equivalently, for large (negative) t̂ = �ŝ(1� cos �⇥)/2. It is

convenient to define the angular variable ⇤ = (1 + | cos �⇥|)/(1 � | cos �⇥|) = �(1 + ŝ/t̂) ⌅ [1,+⇤)

that can also be written as ⇤ = e|y1�y2| where y1,2 are the rapidity of the two jets. The QCD

contribution to the di�erential cross section d⇥(pp ⇥ jj)/d⇤ is almost flat in ⇤, while that of BSM

grows for small values of ⇤, as can be appreciated in Fig. 1.

6

central

√
s = 14 TeV

3σ

cyyf

|H|2ψ̄LHψR

f 2

uu → uu

ud → ud

dd → dd

χ = e|y1−y2|

2

5

dijet
χ

2 4 6 8 10 12 14 16

di
je

t
χ

/d
di

je
t

σ
 d

di
je

t
σ

1/

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 > 3.0 TeVjjM (+0.5)

 < 3.0 TeVjjM2.4 < (+0.4)

 < 2.4 TeVjjM1.9 < (+0.3)

 < 1.9 TeVjjM1.5 < (+0.25)

 < 1.5 TeVjjM1.2 < (+0.2)

 < 1.2 TeVjjM1.0 < (+0.15)

 < 1.0 TeVjjM0.8 < (+0.1)

 < 0.8 TeVjjM0.6 < (+0.05)

 < 0.6 TeVjjM0.4 < 

CMS
 = 7 TeVs

-1L = 2.2 fb

Data
QCD prediction

 = 7 TeV (NLO)+
LL/RRΛ

Figure 1: Normalized dijet angular distributions for |yboost| < 1.11 in several Mjj ranges. For
clarity, the distributions are shifted vertically by the additive amounts shown in parentheses in
the figure. The vertical error bars represent the statistical and systematic uncertainties added
in quadrature. The horizontal bars correspond to the cdijet bin width. The results are compared
with the predictions of NLO QCD with CTEQ6.6 PDF (shaded band) and with predictions for
QCD+CI from [12] at the CI scale L+

LL/RR = 7 TeV (dashed histogram). Non-perturbative cor-
rections due to hadronization and multiple parton interactions are applied to the predictions.
The shaded band indicates the total uncertainty on the NLO QCD predictions due to µr and
µ f scale variations, PDFs, as well as the uncertainties from the non-perturbative corrections,
which have all been added in quadrature.

at 95% CL

cH = 1

gρ = 3

h

F 3TeV

χ =
N(χ < 3, mjj > 3 TeV)

N(χ < 16, mjj > 3 TeV)
(1)

2

above the TeV scale, limiting then their possible contribution to the AFB of the top.

Finally, we would like to stress that these results are based on the 2010 LHC data corresponding

to 36 pb�1 of integrated luminosity [3]. It is expected that the 2011 LHC data set, containing more

luminosity, will significantly improve all the bounds derived throughout this analysis.

Note Added: The 2011 data set for dijet events at CMS has been recently reported in Ref. [33],

corresponding to a luminosity of 2.2 fb�1 and a cut in the dijet invariant mass of mjj > 3 TeV.

The analysis made throughout this article can be repeated for this new data set to obtain more

stringent bounds in all our results, as we now present.

In this new analysis we take �c ⌘ 3 and �max ⌘ 16, obtaining from the data of Ref. [33],

F
(m

jj

>3 TeV)
� ' 0.09 with a 2� interval

0.003 . F 3 TeV
� . 0.150 at 95% C.L. . (30)

The SM prediction is F
(m

jj

>3 TeV)
� ' 0.12. The values in Eq. (17) and Eq. (19) are now given by

~P ' 1

(� 3 TeV
�

max

)SM

(0.33Puu, 0.10Puu, 0.33Pdd, 0.10Pdd, 0.15Pud, 0.064Pud) TeV2 ,

~Q ' 1

(� 3 TeV
�

max

)SM

(0.012Quu, 0.0064Quu, 0.012Qdd, 0.0064Qdd, 0.0022Qud, 0.00087Qud) TeV4 ,

where

Puu ' 0.013 , Pdd ' 0.0019 , Pud ' 0.015 ,

Quu ' 2.8 TeV2 , Qdd ' 0.37 TeV2 , Qud ' 2.5 TeV2 , (31)

and (� 3 TeV
�

max

)SM ' 0.0131 TeV�2.

Table 4 gives the new bounds on the coe�cients of the four-quark interactions, while for the

composite-quark scenarios the updated bounds are given in Table 5. We also find with the new

data
MW 0

gR

& 2.3 TeV ,
MZ0

B

gB

& 1.6 TeV ,
MZ0

Y

gY

& 2.3 TeV at 95% C.L. , (32)

and Fig. 5 for a gluonic resonance. The new bound for the Z parameter is

�9⇥ 10�4 . Z . 3⇥ 10�4 , (33)

and the bounds for W and Y are shown in Fig. 6. The bound Eq. (28) of Sec. 4.4 is now

c(8)
A

⇤2
. 0.2

TeV2 . (34)

15

CMS, 2.2 fb-1
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One at a time Bounds:

interference with QCD:

best bounds up to date

Operator ⇤�( TeV) ⇤+( TeV)

O(1)
uu 4.5 3.0

O(1)
dd 2.4 2.0

O(1)
ud 2.2 2.2

O(8)
ud 1.8 1.3

O(1)
qq 5.0 3.5

O(8)
qq 3.4 2.0

O(1)
qu 2.5 2.5

O(8)
qu 1.9 1.5

O(1)
qd 1.9 1.9

O(8)
qd 1.4 1.2

Table 4: Bounds at 95% CL on the scale suppressing the four-quark interactions obtained from the 2011 dijet data
set given by CMS [33].

Composite States f ( TeV)
dR 1.5
uR 3.2

uR, dR 3.6
qL 3.8

qL, dR 4.0
qL, uR 4.9

qL, uR, dR 5.2

Table 5: 95% CL bounds on the scale f = m⇢/g⇢ for di↵erent composite quark scenarios obtained from the 2011
dijet data set given by CMS [33].

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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-0.5
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1.5
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MG'

gR
2.5 TeV
MG'

2s

1s

Figure 5: Excluded region in the gL � gR plane by the mjj > 3 TeV CMS dijet analysis.
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⌅cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them

3

Operator ��( TeV) �+( TeV)

O(1)
uu 3.2 2.1

O(1)
dd 1.8 1.5

O(1)
ud 1.5 1.5

O(8)
ud 1.3 0.8

O(1)
qq 3.5 2.4

O(8)
qq 2.5 1.3

O(1)
qu 1.7 1.7

O(8)
qu 1.4 1.0

O(1)
qd 1.3 1.3

O(8)
qd 1.0 0.8

Table 1: Bounds at 95% CL on the scale suppressing the four-quark interactions. We denote by �± the bound on
this scale obtained when taking the coe⇤cient in front of the operator ci = ±1, and considering the e⇥ects of the
operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⌅ 30% [25], what amounts to a ⌅ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⌅ 2% for large invariant masses mjj ⌅ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⌅ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇤ SU(3)c ⇥ SU(2)L ⇥ U(1)Y ⇥ GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⌅cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇤ m�/g� � 2 TeV. For g� ⇧ 1,
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Operator ⇤�( TeV) ⇤+( TeV)

O(1)
uu 4.5 3.0

O(1)
dd 2.4 2.0

O(1)
ud 2.2 2.2

O(8)
ud 1.8 1.3

O(1)
qq 5.0 3.5

O(8)
qq 3.4 2.0

O(1)
qu 2.5 2.5

O(8)
qu 1.9 1.5

O(1)
qd 1.9 1.9

O(8)
qd 1.4 1.2

Table 4: Bounds at 95% CL on the scale suppressing the four-quark interactions obtained from the 2011 dijet data
set given by CMS [33].

Composite States f ( TeV)
dR 1.5
uR 3.2

uR, dR 3.6
qL 3.8

qL, dR 4.0
qL, uR 4.9

qL, uR, dR 5.2

Table 5: 95% CL bounds on the scale f = m⇢/g⇢ for di↵erent composite quark scenarios obtained from the 2011
dijet data set given by CMS [33].
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baryon number or hypercharge we obtain respectively

MZ�
B

gB
� 1.2TeV ,

MZ�
Y

gY
� 1.6TeV , (21)

while for the gauge bosons W � of a SU(2)R symmetry, where qR = (uR, dR) is assumed to transform

as a doublet, we get
MW �

gR
� 1.6TeV . (22)

Gluon resonances G�A
µ coupled to quarks as Lint = G�A

µ

�
gLq̄LTA�µqL + gRq̄RTA�µqR

⇥
, with TA =

⇥A/2 where ⇥A are the Gell-Mann matrices, can also be constrained. This kind of resonances have

been recently advocated (see for example Ref. [27]) to accommodate the discrepancy in the top

forward-backward asymmetry measured at Tevatron. In Fig. 2 we show the excluded region of the

parameter space. It can be seen that, for a resonance of mass MG� = 2.5 TeV, the allowed range

for the couplings is �1.5 ⇥ gL,R ⇥ 1.5 at 95% CL.

4.3 Bounds on oblique parameters Y , W and Z

The electroweak precision parameters Y , W and Z [20] can be regarded as a measure of the compos-

iteness of the transversal components of the SU(2)L, U(1)Y , and SU(3)c gauge bosons respectively.

They manifest themselves as deviations of the self-energies of such vector bosons, and can be

parametrized by the following higher dimensional operators:

�Y

4m2
W

(⌃⇤Bµ⇥)
2,

�W

4m2
W

(D⇤W
I
µ⇥)

2,
�Z

4m2
W

(D⇤G
A
µ⇥)

2 . (23)
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above the TeV scale, limiting then their possible contribution to the AFB of the top.

Finally, we would like to stress that these results are based on the 2010 LHC data corresponding

to 36 pb�1 of integrated luminosity [3]. It is expected that the 2011 LHC data set, containing more

luminosity, will significantly improve all the bounds derived throughout this analysis.

Note Added: The 2011 data set for dijet events at CMS has been recently reported in Ref. [33],

corresponding to a luminosity of 2.2 fb�1 and a cut in the dijet invariant mass of mjj > 3 TeV.

The analysis made throughout this article can be repeated for this new data set to obtain more

stringent bounds in all our results, as we now present.

In this new analysis we take �c ⌘ 3 and �max ⌘ 16, obtaining from the data of Ref. [33],

F
(m

jj

>3 TeV)
� ' 0.09 with a 2� interval

0.003 . F 3 TeV
� . 0.150 at 95% C.L. . (30)

The SM prediction is F
(m

jj

>3 TeV)
� ' 0.12. The values in Eq. (17) and Eq. (19) are now given by

~P ' 1

(� 3 TeV
�

max

)SM

(0.33Puu, 0.10Puu, 0.33Pdd, 0.10Pdd, 0.15Pud, 0.064Pud) TeV2 ,

~Q ' 1

(� 3 TeV
�

max

)SM

(0.012Quu, 0.0064Quu, 0.012Qdd, 0.0064Qdd, 0.0022Qud, 0.00087Qud) TeV4 ,

where

Puu ' 0.013 , Pdd ' 0.0019 , Pud ' 0.015 ,

Quu ' 2.8 TeV2 , Qdd ' 0.37 TeV2 , Qud ' 2.5 TeV2 , (31)

and (� 3 TeV
�

max

)SM ' 0.0131 TeV�2.

Table 4 gives the new bounds on the coe�cients of the four-quark interactions, while for the

composite-quark scenarios the updated bounds are given in Table 5. We also find with the new

data
MW 0

gR

& 2.3 TeV ,
MZ0

B

gB

& 1.6 TeV ,
MZ0

Y

gY

& 2.3 TeV at 95% C.L. , (32)

and Fig. 5 for a gluonic resonance. The new bound for the Z parameter is

�9⇥ 10�4 . Z . 3⇥ 10�4 , (33)

and the bounds for W and Y are shown in Fig. 6. The bound Eq. (28) of Sec. 4.4 is now

c(8)
A

⇤2
. 0.2

TeV2 . (34)
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baryon number or hypercharge we obtain respectively

MZ�
B

gB
� 1.2TeV ,

MZ�
Y

gY
� 1.6TeV , (21)

while for the gauge bosons W � of a SU(2)R symmetry, where qR = (uR, dR) is assumed to transform

as a doublet, we get
MW �

gR
� 1.6TeV . (22)

Gluon resonances G�A
µ coupled to quarks as Lint = G�A

µ

�
gLq̄LTA�µqL + gRq̄RTA�µqR

⇥
, with TA =

⇥A/2 where ⇥A are the Gell-Mann matrices, can also be constrained. This kind of resonances have

been recently advocated (see for example Ref. [27]) to accommodate the discrepancy in the top

forward-backward asymmetry measured at Tevatron. In Fig. 2 we show the excluded region of the

parameter space. It can be seen that, for a resonance of mass MG� = 2.5 TeV, the allowed range

for the couplings is �1.5 ⇥ gL,R ⇥ 1.5 at 95% CL.

4.3 Bounds on oblique parameters Y , W and Z

The electroweak precision parameters Y , W and Z [20] can be regarded as a measure of the compos-

iteness of the transversal components of the SU(2)L, U(1)Y , and SU(3)c gauge bosons respectively.

They manifest themselves as deviations of the self-energies of such vector bosons, and can be

parametrized by the following higher dimensional operators:

�Y

4m2
W

(⌃⇤Bµ⇥)
2,

�W

4m2
W

(D⇤W
I
µ⇥)

2,
�Z

4m2
W

(D⇤G
A
µ⇥)

2 . (23)
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E) Compositeness Bounds:Composite c(1)uu/g2� c(1)dd /g
2
� c(1)ud /g

2
� c(8)ud /g

2
� c(1)qq /g2� c(8)qq /g2� c(1)qu /g2� c(8)qu /g2� c(1)qd /g

2
� c(8)qd /g

2
�

uR �37/72 0 0 0 0 0 0 0 0 0
dR 0 �7/18 0 0 0 0 0 0 0 0

uR, dR �37/72 �7/18 2/9 �1 0 0 0 0 0 0
qL 0 0 0 0 �5/36 �1 0 0 0 0

qL, uR �37/72 0 0 0 �5/36 �1 �1/9 �1 0 0
qL, dR 0 �7/18 0 0 �5/36 �1 0 0 1/18 �1

qL, uR, dR �37/72 �7/18 2/9 �1 �5/36 �1 �1/9 �1 1/18 �1

Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�

|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them

3

Operator ��( TeV) �+( TeV)

O(1)
uu 3.2 2.1

O(1)
dd 1.8 1.5

O(1)
ud 1.5 1.5

O(8)
ud 1.3 0.8

O(1)
qq 3.5 2.4

O(8)
qq 2.5 1.3

O(1)
qu 1.7 1.7

O(8)
qu 1.4 1.0

O(1)
qd 1.3 1.3

O(8)
qd 1.0 0.8

Table 1: Bounds at 95% CL on the scale suppressing the four-quark interactions. We denote by �± the bound on
this scale obtained when taking the coe⇤cient in front of the operator ci = ±1, and considering the e⇥ects of the
operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⇤ 2% for large invariant masses mjj ⇤ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⇤ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇥ SU(3)c � SU(2)L � U(1)Y � GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⇤cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇥ m�/g� � 2 TeV. For g� ⌅ 1,

9
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E) Compositeness Bounds:Composite c(1)uu/g2� c(1)dd /g
2
� c(1)ud /g

2
� c(8)ud /g

2
� c(1)qq /g2� c(8)qq /g2� c(1)qu /g2� c(8)qu /g2� c(1)qd /g

2
� c(8)qd /g

2
�

uR �37/72 0 0 0 0 0 0 0 0 0
dR 0 �7/18 0 0 0 0 0 0 0 0

uR, dR �37/72 �7/18 2/9 �1 0 0 0 0 0 0
qL 0 0 0 0 �5/36 �1 0 0 0 0

qL, uR �37/72 0 0 0 �5/36 �1 �1/9 �1 0 0
qL, dR 0 �7/18 0 0 �5/36 �1 0 0 1/18 �1

qL, uR, dR �37/72 �7/18 2/9 �1 �5/36 �1 �1/9 �1 1/18 �1

Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them
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operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⇤ 2% for large invariant masses mjj ⇤ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⇤ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇥ SU(3)c � SU(2)L � U(1)Y � GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⇤cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇥ m�/g� � 2 TeV. For g� ⌅ 1,
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A Dimension six operators involving quarks

Here we list the set of independent higher-dimensional operators involving SM quarks. As explained

in section 2, we assume a flavor symmetry for the three left-handed quarks qL, the three right-handed

down-quarks dR, and the two lightest right-handed up-quarks uR, given by U(3)q ⌦U(3)d ⌦U(2)u.

The top right-handed quark tR will be considered a singlet of the flavor symmetry. We use the

following notation. We label with A, I and F the color, electroweak and flavor index respectively

in the adjoint representation. The contraction of the indices in the fundamental representation

of these symmetries is understood within the fields in parenthesis, and flavor indices can also be

contracted with Yukawa matrices Yu,d. We identify TA = �A/2, being �A the Gell-Mann matrices,

and ⌧I = �I/2, where �I are the Pauli matrices.

We classify the operators according to their expected suppression. First, we show the list of

independent operators unsuppressed by Yukawa couplings (those generated in the massless quark

limit). Following the discussion of section 2, we separate these operators as those of first class and
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Fig. 2. Constraints on the form factors Y and W in models where these are the only new physics effects. We

separately show the impact of EWPT and of LEP2.

need to accurately diagonalize the full mass matrix and find all the eigenvectors, be this a

finite or an infinite-dimensional (Kaluza–Klein) problem. Instead it is often more efficient

to find a convenient set of interpolating fields for the light states and integrate out all the

others. It should be stressed that the fields we integrate out are also not exact mass eigen-

states in general, as they mix with the chosen interpolating fields. But this does not matter

as long as the mass matrix reduced to the fields we integrate out is nonsingular. When

fermions couple to vector bosons like in Eq. (2), taking W̄ , B̄ as the low-energy fields is

the most convenient choice. With this choice, new physics effects are fully parametrized by

vector boson vacuum polarizations. Using the freedom of choosing the appropriate fields

one can drastically simplify the computations and focus directly on the relevant quantities.

For example one immediately sees the equivalence of the 4-fermion interactions mediated

by heavy gauge bosons with a suitable “universal” effect.

5.1. Gauge bosons in 5 dimensions

As a first example we will consider a model where the SM gauge bosons propagate in

a flat extra dimension assumed to be a S1/Z2 orbifold of length L = πR (0 ! y ! L).

The SM fermions and the Higgs are assumed to be confined on the same 4-dimensional

boundary, say, at y = 0.

Previous analyses obtained the following low-energy effective Lagrangian that de-

scribes how heavy KK excitations affect the low-energy interactions of the SM fields:

(14)Leff = LSM − R2
π2

6

(
J a

µJ a
µ + JB

µ JB
µ + JG

µ JG
µ

) +O
(
R4

)
,
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Figure 2: Excluded region in the gL � gR plane by the mjj > 2 TeV dijet analysis.

baryon number or hypercharge we obtain respectively

MZ�
B

gB
� 1.2TeV ,

MZ�
Y

gY
� 1.6TeV , (21)

while for the gauge bosons W � of a SU(2)R symmetry, where qR = (uR, dR) is assumed to transform

as a doublet, we get
MW �

gR
� 1.6TeV . (22)

Gluon resonances G�A
µ coupled to quarks as Lint = G�A

µ

�
gLq̄LTA�µqL + gRq̄RTA�µqR

⇥
, with TA =

⇥A/2 where ⇥A are the Gell-Mann matrices, can also be constrained. This kind of resonances have

been recently advocated (see for example Ref. [27]) to accommodate the discrepancy in the top

forward-backward asymmetry measured at Tevatron. In Fig. 2 we show the excluded region of the

parameter space. It can be seen that, for a resonance of mass MG� = 2.5 TeV, the allowed range

for the couplings is �1.5 ⇥ gL,R ⇥ 1.5 at 95% CL.

4.3 Bounds on oblique parameters Y , W and Z

The electroweak precision parameters Y , W and Z [20] can be regarded as a measure of the compos-

iteness of the transversal components of the SU(2)L, U(1)Y , and SU(3)c gauge bosons respectively.

They manifest themselves as deviations of the self-energies of such vector bosons, and can be

parametrized by the following higher dimensional operators:

�Y

4m2
W

(⌃⇤Bµ⇥)
2,

�W

4m2
W

(D⇤W
I
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2,
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4m2
W
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A
µ⇥)

2 . (23)
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E) Compositeness Bounds:Composite c(1)uu/g2� c(1)dd /g
2
� c(1)ud /g

2
� c(8)ud /g

2
� c(1)qq /g2� c(8)qq /g2� c(1)qu /g2� c(8)qu /g2� c(1)qd /g

2
� c(8)qd /g

2
�

uR �37/72 0 0 0 0 0 0 0 0 0
dR 0 �7/18 0 0 0 0 0 0 0 0

uR, dR �37/72 �7/18 2/9 �1 0 0 0 0 0 0
qL 0 0 0 0 �5/36 �1 0 0 0 0

qL, uR �37/72 0 0 0 �5/36 �1 �1/9 �1 0 0
qL, dR 0 �7/18 0 0 �5/36 �1 0 0 1/18 �1

qL, uR, dR �37/72 �7/18 2/9 �1 �5/36 �1 �1/9 �1 1/18 �1

Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�

|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them

3

Operator ��( TeV) �+( TeV)

O(1)
uu 3.2 2.1

O(1)
dd 1.8 1.5

O(1)
ud 1.5 1.5

O(8)
ud 1.3 0.8

O(1)
qq 3.5 2.4

O(8)
qq 2.5 1.3

O(1)
qu 1.7 1.7

O(8)
qu 1.4 1.0

O(1)
qd 1.3 1.3

O(8)
qd 1.0 0.8

Table 1: Bounds at 95% CL on the scale suppressing the four-quark interactions. We denote by �± the bound on
this scale obtained when taking the coe⇤cient in front of the operator ci = ±1, and considering the e⇥ects of the
operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⇤ 2% for large invariant masses mjj ⇤ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⇤ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇥ SU(3)c � SU(2)L � U(1)Y � GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⇤cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇥ m�/g� � 2 TeV. For g� ⌅ 1,
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E) Compositeness Bounds:Composite c(1)uu/g2� c(1)dd /g
2
� c(1)ud /g

2
� c(8)ud /g

2
� c(1)qq /g2� c(8)qq /g2� c(1)qu /g2� c(8)qu /g2� c(1)qd /g

2
� c(8)qd /g

2
�
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qL, uR �37/72 0 0 0 �5/36 �1 �1/9 �1 0 0
qL, dR 0 �7/18 0 0 �5/36 �1 0 0 1/18 �1

qL, uR, dR �37/72 �7/18 2/9 �1 �5/36 �1 �1/9 �1 1/18 �1

Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them
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this scale obtained when taking the coe⇤cient in front of the operator ci = ±1, and considering the e⇥ects of the
operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⇤ 2% for large invariant masses mjj ⇤ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⇤ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇥ SU(3)c � SU(2)L � U(1)Y � GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⇤cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇥ m�/g� � 2 TeV. For g� ⌅ 1,
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Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
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|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�

|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them
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uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by

a ⇤ 2% for large invariant masses mjj ⇤ 2TeV. We therefore expect that our calculations for the

bounds on � can be trusted within a ⇤ 10% margin of error.

4.1 Bounds on composite quarks

As we mentioned in section 2, previous experiments have not been able to probe the compositeness

of quarks beyond the TeV scale. Data from dijets at the LHC can however improve this situation

and put stronger constraints on their compositeness scale.

We will focus on models in which quarks arise as composite states of a strong sector whose

global symmetry is G ⇥ SU(3)c � SU(2)L � U(1)Y � GF , where GF is given in Eq. (5). In these

theories we expect to have massive vector resonances associated to the current operators of G, and
then transforming in the adjoint representation of G. This is in fact the case of the five-dimensional

analogs based on the AdS/CFT correspondence [7]. Following Ref. [8], we will assume that all the

vector resonances have equal masses and couplings, m� and g� respectively. Let us first consider the

case in which only the right-handed up-type quarks uR are composite states, with charges under

the global group G equal to (3,1,2/3,1,1,2). In this type of models, as we said before, the Higgs

could also be composite without a⇥ecting our conclusions. Now, integrating out the heavy vector

resonances, we find that the four-quark operators of Eq. (8) are induced with coe⇤cients given in

Table 2, where we have fixed � = m�. Constraints from dijets give f ⇥ m�/g� � 2 TeV. For g� ⌅ 1,
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E) Compositeness Bounds:Composite c(1)uu/g2� c(1)dd /g
2
� c(1)ud /g

2
� c(8)ud /g

2
� c(1)qq /g2� c(8)qq /g2� c(1)qu /g2� c(8)qu /g2� c(1)qd /g

2
� c(8)qd /g

2
�

uR �37/72 0 0 0 0 0 0 0 0 0
dR 0 �7/18 0 0 0 0 0 0 0 0

uR, dR �37/72 �7/18 2/9 �1 0 0 0 0 0 0
qL 0 0 0 0 �5/36 �1 0 0 0 0

qL, uR �37/72 0 0 0 �5/36 �1 �1/9 �1 0 0
qL, dR 0 �7/18 0 0 �5/36 �1 0 0 1/18 �1

qL, uR, dR �37/72 �7/18 2/9 �1 �5/36 �1 �1/9 �1 1/18 �1

Table 2: Coe⇤cients of the operators of Eq. (8) induced from integrating out heavy vector resonances for di⇥erent
composite quark scenarios. We have taken � = m�.

Composite States f ( TeV)
dR 1.1
uR 2.3

uR, dR 2.6
qL 2.7

qL, dR 2.9
qL, uR 3.5

qL, uR, dR 3.8

Table 3: 95% CL bounds on the scale f = m�/g� for di⇥erent composite quark scenarios.

we see that this bound is stronger than that coming from the S-parameter that requires f � 4�v/g�

in theories of composite Higgs [8].

Similarly, we can assume a scenario where only the right-handed down-type quarks dR are

composite with quantum numbers under G equal to (3,1,�1/3,1,3,1). Again the coe�cients of

the four-quark operators induced are given in Table 2. We obtain the bound f � 1 TeV. In the

case of both uR and dR composite the bound goes up to f � 2.5 TeV.

For composite left-handed quarks qL with G-charges (3,2,1/6,3,1,1), the bound is f � 3 TeV.

Bounds on other composite quark scenarios are given in Table 3.

For weakly-coupled resonances (g� ⇥ 1) with masses close to mcut
jj stronger bounds can be

obtained from dijet resonance searches at the LHC [19]. This is just a consequence of the resonant

enhancement of the cross section for a narrow region of invariant masses, where the resonances sit.

This feature however is lost when the resonances are too broad.

4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to quarks generate four-quark operators that can be

constrained by the dijet LHC data. Here we provide some examples. For a gauge boson Z � gauging
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⇥cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them

3

Operator ��( TeV) �+( TeV)

O(1)
uu 3.2 2.1

O(1)
dd 1.8 1.5

O(1)
ud 1.5 1.5

O(8)
ud 1.3 0.8

O(1)
qq 3.5 2.4

O(8)
qq 2.5 1.3

O(1)
qu 1.7 1.7

O(8)
qu 1.4 1.0

O(1)
qd 1.3 1.3

O(8)
qd 1.0 0.8

Table 1: Bounds at 95% CL on the scale suppressing the four-quark interactions. We denote by �± the bound on
this scale obtained when taking the coe⇤cient in front of the operator ci = ±1, and considering the e⇥ects of the
operators one by one.

uncertainty in the bounds. Also the NLO QCD correction to (F 2TeV
⇥ )BSM/(F 2TeV

⇥ )SM has shown

to be as large as ⇤ 30% [25], what amounts to a ⇤ 10% uncertainty in the bounds on �. Finally,

it has been recently shown in [26] that electroweak corrections reduce the SM prediction of F⇥ by
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Figure 2: Excluded region in the gL � gR plane by the mjj > 2 TeV dijet analysis.

baryon number or hypercharge we obtain respectively

MZ�
B

gB
� 1.2TeV ,

MZ�
Y

gY
� 1.6TeV , (21)

while for the gauge bosons W � of a SU(2)R symmetry, where qR = (uR, dR) is assumed to transform

as a doublet, we get
MW �

gR
� 1.6TeV . (22)

Gluon resonances G�A
µ coupled to quarks as Lint = G�A

µ

�
gLq̄LTA�µqL + gRq̄RTA�µqR

⇥
, with TA =

⇥A/2 where ⇥A are the Gell-Mann matrices, can also be constrained. This kind of resonances have

been recently advocated (see for example Ref. [27]) to accommodate the discrepancy in the top

forward-backward asymmetry measured at Tevatron. In Fig. 2 we show the excluded region of the

parameter space. It can be seen that, for a resonance of mass MG� = 2.5 TeV, the allowed range

for the couplings is �1.5 ⇥ gL,R ⇥ 1.5 at 95% CL.

4.3 Bounds on oblique parameters Y , W and Z

The electroweak precision parameters Y , W and Z [20] can be regarded as a measure of the compos-

iteness of the transversal components of the SU(2)L, U(1)Y , and SU(3)c gauge bosons respectively.

They manifest themselves as deviations of the self-energies of such vector bosons, and can be

parametrized by the following higher dimensional operators:

�Y

4m2
W

(⌃⇤Bµ⇥)
2,

�W

4m2
W

(D⇤W
I
µ⇥)

2,
�Z

4m2
W

(D⇤G
A
µ⇥)

2 . (23)

11 gluon compositeness

best bound up to date

above the TeV scale, limiting then their possible contribution to the AFB of the top.

Finally, we would like to stress that these results are based on the 2010 LHC data corresponding

to 36 pb�1 of integrated luminosity [3]. It is expected that the 2011 LHC data set, containing more

luminosity, will significantly improve all the bounds derived throughout this analysis.

Note Added: The 2011 data set for dijet events at CMS has been recently reported in Ref. [33],

corresponding to a luminosity of 2.2 fb�1 and a cut in the dijet invariant mass of mjj > 3 TeV.

The analysis made throughout this article can be repeated for this new data set to obtain more

stringent bounds in all our results, as we now present.

In this new analysis we take �c ⌘ 3 and �max ⌘ 16, obtaining from the data of Ref. [33],

F
(m

jj

>3 TeV)
� ' 0.09 with a 2� interval

0.003 . F (m
jj

>3 TeV)
� . 0.15 at 95% C.L. . (30)

The SM prediction is F
(m

jj

>3 TeV)
� ' 0.12. The values in Eq. (17) and Eq. (19) are now given by

~P ' 1

(� 3 TeV
�

max

)SM

(0.33Puu, 0.10Puu, 0.33Pdd, 0.10Pdd, 0.15Pud, 0.064Pud) TeV2 ,

~Q ' 1

(� 3 TeV
�

max

)SM

(0.012Quu, 0.0064Quu, 0.012Qdd, 0.0064Qdd, 0.0022Qud, 0.00087Qud) TeV4 ,

where

Puu ' 0.013 , Pdd ' 0.0019 , Pud ' 0.015 ,

Quu ' 2.8 TeV2 , Qdd ' 0.37 TeV2 , Qud ' 2.5 TeV2 , (31)

and (� 3 TeV
�

max

)SM ' 0.0131 TeV�2.

Table 4 gives the new bounds on the coe�cients of the four-quark interactions, while for the

composite-quark scenarios the updated bounds are given in Table 5. We also find with the new

data
MW 0

gR

& 2.3 TeV ,
MZ0

B

gB

& 1.6 TeV ,
MZ0

Y

gY

& 2.3 TeV at 95% C.L. , (32)

and Fig. 5 for a gluonic resonance. The new bound for the Z parameter is

�9⇥ 10�4 . Z . 3⇥ 10�4 , (33)

and the bounds for W and Y are shown in Fig. 6. The bound Eq. (28) of Sec. 4.4 is now

c(8)
A

⇤2
. 0.2

TeV2 . (34)
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Top-Quark Asymmetry – A New Physics Overview
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Figure 1: Top-antitop production at the Tevatron. The ratio OSM/Oexp is displayed for the total cross section
σtt̄ and its invariant mass distribution (dσ/dMtt̄)> for Mtt̄ ∈ [0.8,1.4] TeV. The inclusive asymmetry in the
parton frame is shown for the lepton + jets channel, (AFB)tt̄l+ j, besides its bin (A

t
FB)

> for high invariant mass

Mtt̄ > 0.45 TeV, as well as for the dilepton channel, (AtFB)
tt̄
ll . The asymmetry in the laboratory frame is denoted

by (AtFB)
lab, and AlFB is the charged lepton asymmetry. Numbers correspond to the central measured values [1].

vector boson with axial-vector couplings g
q
A to quarks in the s channel, a color-singlet vector in the

t channel or a color-triplet scalar in the u channel, both with flavor-changing couplings gut , gut̄ to

quarks.

In the following, we will review the three classes of new physics (NP) in top-antitop produc-

tion. Our main focus will be on models that reconcile the theory prediction of the asymmetry with

its measurement, while preserving the good description of the tt̄ cross section and its Mtt̄ distribu-

tion in terms of QCD. Further strong constraints from flavor physics and collider observables have

to be respected when constructing a viable model. For each class, we give examples of concrete

realizations of NP that yield a consistent picture of top-quark pair production.

2. s channel: color-octet vectors (axigluons)

Color-octet vector bosons with axial-vector couplings g
q
A to quarks, dubbed axigluons, gener-

ate a charge asymmetry at tree level. The interference of an axigluon with the QCD gluon (INT) and

the interference of an axigluon with itself (NP) yield the following contributions to tt̄ production,

σ INTa ∼ g2s
g
q
A g

t
A

M2
tt̄
−M2

G

, σNPs ∼ (gqA)
2(gtA)

2 M2
tt̄

(M2
tt̄
−M2

G)
2
, (2.1)

whereMG is the mass of the axigluon and gs denotes the strong coupling constant of QCD. The sign

of the interference term σ INTa is determined by the magnitude of the axigluon mass with respect to

the momentum transfer in the process qq̄→ tt̄ and by the signs of the quark couplings g
q
A and g

t
A.

In order to generate a positive asymmetry, a light axigluon of MG ≈Mtt̄ may have flavor-universal

couplings to quarks, whereas a heavy axigluon withMG &Mtt̄ must exhibit axial-vector couplings

of different sign to light and top quarks. A strong constraint on the magnitude of g
q
Ag

t
A/M

2
G arises

3

7

FIG. 1: Interfering qq̄ � tt̄ (above) and qq̄ � tt̄j (below) amplitudes.

broadened by the varying boost of the tt̄ system along
the beamline, and the asymmetry is diluted to App̄ =
0.038± 0.006. Our mcfm predictions are in accord with
other recent calculations [1–3]. These predictions are for
top quarks as they emerge from the qq̄ collision, before
any modifications by detector acceptance and resolution.
We will call this the parton-level. Based on our own stud-
ies of scale dependence in mcfm and also the studies in
the references above, we assign a 15% relative uncertainty
to all NLO mcfm predictions.

An NLO calculation for inclusive tt̄ production is an
LO calculation for the production of a tt̄ + jet final state,
and thus an LO calculation for the asymmetry in final
states containing an extra jet. A new NLO calculation
for tt̄j production (and thus for the asymmetry) suggests
that the negative asymmetry in this final state is greatly
reduced from leading-order [25]. This new result for the
tt̄j asymmetry can be incorporated into an analysis of
the asymmetry for inclusive tt̄ production only within the
context of a full NNLO calculation of tt̄ production. Such
calculations are underway but are not complete. Thresh-
old resummation calculations indicate that the inclusive
asymmetry at NNLO should not di�er greatly from that
predicted at NLO [1, 21]. In this paper, we compare
to the NLO predictions for tt̄ production. We include a
15% scale dependence uncertainty, but note that there is
an overall unknown systematic uncertainty on the theo-
retical prediction pending the completion of the NNLO
calculation.

In the near-threshold form of the cross section [1] the
tt̄ frame asymmetry can be seen to increase with the top
quark production angle and velocity (�), and these are
thus key variables for understanding the source of the
asymmetry. In this analysis, the proxies for these vari-
ables are the top quark rapidities and the mass Mtt̄ of
the tt̄ system. Measurements of the rapidity and mass
dependence of Att̄ are described in Sections VI and VII.

B. NLO QCD Simulation with MC@NLO

We use the event generator mc@nlo to create a sim-
ulated sample that includes the QCD asymmetry as pre-
dicted by the standard model at NLO. In addition to
including the asymmetric processes this generator prop-
erly estimates the amount of gg, and thus the dilution of
the asymmetry from these symmetric processes.
Some naming conventions for the data-to-simulation

comparison are given in Table II. All Monte Carlo (MC)
generators will have the same conventions: the truth in-
formation is the parton level; the pure top signal after
simulation, selection, and reconstruction is the tt̄ level,
and the full prediction including backgrounds is tt̄ + bkg
level. The reconstructed lepton+jets sample is the data.
Subtracting the backgrounds from the data yields the
reconstructed tt̄ signal-level. Correcting the data for ac-
ceptance and resolution produces a measurement at the
parton-level.

TABLE II: Naming conventions for data and simulation sam-
ples.

sample level definition comparable to
data data reco l+jets
data signal data minus bkg tt̄ in data
data parton corrected signal tt̄ at creation
MC tt̄+bkg reco tt̄ + bkg data
MC tt̄ reco tt̄ no bkg data signal
MC parton truth level data parton

The mc@nlo predictions for the asymmetries at var-
ious levels of simulation are shown in Table III. The
uncertainties include the Monte Carlo statistics and the
NLO theoretical uncertainty. The parton-level mc@nlo
asymmetries are consistent with mcfm, as expected. Af-
ter CDF detector simulation, event selection, and recon-
struction, the asymmetries in the mc@nlo tt̄ signal are

many many models proposed so far

only a handful are not ruled out already...
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Figure 3: Excluded region in the W -Y plane by the mjj > 2 TeV ATLAS dijet analysis.

At large momenta as compared to the masses of the gauge bosons, these operators induce e⇥ective

four-fermion operators, equivalent to those arising from integrating out a very heavy copy of the

corresponding gauge boson. Therefore our dijet analysis can be conveniently used to put bounds

on these parameters. We show in Fig. 3 our results in the W -Y plane. Although bounds from LEP

[20] are still stronger, this analysis shows that LHC will be competitive when running at a higher

energy. Regarding the Z-parameter our analysis gives the strongest bound up to date:

� 3⇥ 10�3 � Z � 6⇥ 10�4. (24)

4.4 Bounds on new interactions for the AFB of the top

The recent discrepancy between the measured AFB of the top and its SM prediction [11, 12] has

boosted the search for BSM that could explain it. Dijet angular distributions can be useful to

constrain these models. As an example, we consider the proposal of Refs. [28, 29] where the

measured value of the top asymmetry was explained by the following new interaction:

Leff =
c(8)A
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A =
c(8)A

�2
(ū TA�µ�5u)(t̄ TA�µ�

5t) . (25)

In terms of chirality eigenstates the operator O(8)
A reads

O(8)
A =(ūR�

µTAuR)(t̄R�µT
AtR)� (ūL�

µTAuL)(t̄R�µT
AtR)

� (ūR�
µTAuR)(t̄L�µT

AtL) + (ūL�
µTAuL)(t̄L�µT

AtL) . (26)
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At large momenta as compared to the masses of the gauge bosons, these operators induce e⇥ective

four-fermion operators, equivalent to those arising from integrating out a very heavy copy of the

corresponding gauge boson. Therefore our dijet analysis can be conveniently used to put bounds

on these parameters. We show in Fig. 3 our results in the W -Y plane. Although bounds from LEP

[20] are still stronger, this analysis shows that LHC will be competitive when running at a higher

energy. Regarding the Z-parameter our analysis gives the strongest bound up to date:

� 3⇥ 10�3 � Z � 6⇥ 10�4. (24)
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can be avoided if a flavor symmetry is imposed in the BSM sector. For example we can assume a

flavor symmetry for the three left-handed quarks qL, the three right-handed down-quarks dR, and

the two lightest right-handed up-quarks uR, given by

GF ⇤ U(3)q ⇥ U(3)d ⇥ U(2)u , (5)

and similarly for the lepton sector. Due to the absence of important constraints on the flavor physics

for the right-handed top tR, we can consider it a singlet of the flavor symmetry. This allows us

to treat the tR independently of the other quarks; its physical implications, some of them already

studied in Ref. [14], are left for a future publication. Yukawa couplings break the GF symmetry,

but it can be shown, by using a spurion’s power counting, that flavor constraints on dimension-six

operators can be easily satisfied for � slightly above the electroweak scale [15]. From now on, we

will consider BSM that, up to Yukawa couplings, fulfill the flavor symmetry GF .

At LEP the properties of the leptons ⇧ = lL, lR were very well measured, putting bounds at the

per-mille level on deviations from the SM predictions either arising from vertex corrections or new

four-lepton contact interactions. From [16], one gets �/(
�
|�lL,R |),�/(

�
|⇥lL,R |) � 3� 4 TeV. This

implies, for example, that the scale of compositeness of the leptons is larger than 40� 50 TeV for

�lL,R ⌅ g2� ⌅ 16⌅2. Thus, the leptonic sector has been very well tested at LEP and recent LHC

data, having only quarks in the initial state, cannot provide better bounds.

For the left-handed quark sector ⇧ = qL, there are very strong constraints on interactions of the

second type of Eq. (4). The most important ones arise from Kaon and ⇥-decays [16] which have

allowed to measure very precisely quark-lepton universality of the W interactions. This leads to

bounds on deviations from the W coupling to left-handed quarks as strong as those for leptons,

�/(
�

|⇥qL |) � 3 � 4 TeV, which we do not expect to be improved substantially at the LHC.

Similar limits are obtained from measurements at LEP of the Z decay to hadrons [16]. Bounds

on four-qL interactions are weaker, with the main constraint coming from Tevatron and giving

�/(
�
|�qL |) � 1TeV [16]. Clearly, the LHC can increase these bounds considerably as we will show

later. While theories of composite Higgs and composite qL, where one expects large �qL and ⇥qL

coe⌅cients (since �qL ⌅ ⇥qL ⌅ g2� ⇥ 16⌅2) [6, 8, 14], are very constrained by present experimental

data, theories with only qL composite (and elementary Higgs, as those for example in Ref. [9]) where

only �qL is expected to grow with g2�, are not so constrained. LHC dijets can then, as we will see,

probe these scenarios at an unprecedented level.

Regarding right-handed quarks uR and dR, their couplings to gauge bosons are still poorly

measured, due to their small coupling to W and Z. For example, one of the best bounds, arising

from LEP, are on the Z coupling to bR which reads 0 ⇥ ⇤gbR/gbR ⇥ 0.2 [17]. Furthermore these

vertices can be protected by symmetries of the BSM sector [18]. The strongest constraints on

⇥uR,dR are again coming from Tevatron and, as for the left-handed case, LHC can improve them

3

X

above the TeV scale, limiting then their possible contribution to the AFB of the top.

Finally, we would like to stress that these results are based on the 2010 LHC data corresponding

to 36 pb�1 of integrated luminosity [3]. It is expected that the 2011 LHC data set, containing more

luminosity, will significantly improve all the bounds derived throughout this analysis.

Note Added: The 2011 data set for dijet events at CMS has been recently reported in Ref. [33],

corresponding to a luminosity of 2.2 fb�1 and a cut in the dijet invariant mass of mjj > 3 TeV.

The analysis made throughout this article can be repeated for this new data set to obtain more

stringent bounds in all our results, as we now present.

In this new analysis we take �c ⌘ 3 and �max ⌘ 16, obtaining from the data of Ref. [33],

F
(m

jj

>3 TeV)
� ' 0.09 with a 2� interval

0.003 . F (m
jj

>3 TeV)
� . 0.15 at 95% C.L. . (30)

The SM prediction is F
(m

jj

>3 TeV)
� ' 0.12. The values in Eq. (17) and Eq. (19) are now given by

~P ' 1

(� 3 TeV
�

max

)SM

(0.33Puu, 0.10Puu, 0.33Pdd, 0.10Pdd, 0.15Pud, 0.064Pud) TeV2 ,

~Q ' 1

(� 3 TeV
�

max

)SM

(0.012Quu, 0.0064Quu, 0.012Qdd, 0.0064Qdd, 0.0022Qud, 0.00087Qud) TeV4 ,

where

Puu ' 0.013 , Pdd ' 0.0019 , Pud ' 0.015 ,

Quu ' 2.8 TeV2 , Qdd ' 0.37 TeV2 , Qud ' 2.5 TeV2 , (31)

and (� 3 TeV
�

max

)SM ' 0.0131 TeV�2.

Table 4 gives the new bounds on the coe�cients of the four-quark interactions, while for the

composite-quark scenarios the updated bounds are given in Table 5. We also find with the new

data
MW 0

gR

& 2.3 TeV ,
MZ0

B

gB

& 1.6 TeV ,
MZ0

Y

gY

& 2.3 TeV at 95% C.L. , (32)

and Fig. 5 for a gluonic resonance. The new bound for the Z parameter is

�9⇥ 10�4 . Z . 3⇥ 10�4 , (33)

and the bounds for W and Y are shown in Fig. 6. The bound Eq. (28) of Sec. 4.4 is now

c(8)
A

⇤2
. 0.2

TeV2 . (34)
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At large momenta as compared to the masses of the gauge bosons, these operators induce e⇥ective

four-fermion operators, equivalent to those arising from integrating out a very heavy copy of the

corresponding gauge boson. Therefore our dijet analysis can be conveniently used to put bounds

on these parameters. We show in Fig. 3 our results in the W -Y plane. Although bounds from LEP

[20] are still stronger, this analysis shows that LHC will be competitive when running at a higher

energy. Regarding the Z-parameter our analysis gives the strongest bound up to date:

� 3⇥ 10�3 � Z � 6⇥ 10�4. (24)

4.4 Bounds on new interactions for the AFB of the top

The recent discrepancy between the measured AFB of the top and its SM prediction [11, 12] has

boosted the search for BSM that could explain it. Dijet angular distributions can be useful to

constrain these models. As an example, we consider the proposal of Refs. [28, 29] where the

measured value of the top asymmetry was explained by the following new interaction:

Leff =
c(8)A

�2
O(8)

A =
c(8)A

�2
(ū TA�µ�5u)(t̄ TA�µ�

5t) . (25)

In terms of chirality eigenstates the operator O(8)
A reads

O(8)
A =(ūR�

µTAuR)(t̄R�µT
AtR)� (ūL�

µTAuL)(t̄R�µT
AtR)

� (ūR�
µTAuR)(t̄L�µT

AtL) + (ūL�
µTAuL)(t̄L�µT

AtL) . (26)

12

Servant et al.

Perez et al.

Figure 1:

1 A

ρG

uR ∼ (3, 1, 2/3, 1, 1, 2)

dR ∼ (3, 1,−1/3, 1, 3, 2)

qL ∼ (3, 2, 1/6, 3, 1, 2)

Λ ≡ mρ

f =
mρ

gρ

p2Π′(0)

c(8)
A

Λ2
∼ 2 TeV−2

1

Figure 1:

1 A

ρG

uR ∼ (3, 1, 2/3, 1, 1, 2)

dR ∼ (3, 1,−1/3, 1, 3, 2)

qL ∼ (3, 2, 1/6, 3, 1, 2)

Λ ≡ mρ

f =
mρ

gρ

p2Π′(0)

c(8)
A

Λ2
∼ 2 TeV−2

σtt̄

Att̄
FB

1

Tevatron

Figure 1:

1 A

ρG

uR ∼ (3, 1, 2/3, 1, 1, 2)

dR ∼ (3, 1,−1/3, 1, 3, 2)

qL ∼ (3, 2, 1/6, 3, 1, 2)

Λ ≡ mρ

f =
mρ

gρ

p2Π′(0)

c(8)
A

Λ2
∼ 2 TeV−2

σtt̄

Att̄
FB

1

✓  
✓  

LHC dijets

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

⇥ �TeV⇥

cA
�8⇥

mjj � 1.2 TeV

mjj � 2 TeV

AFB

Figure 4: The red line shows the value of c(8)A as a function of � that fits the AFB of the top [29]. The shaded
regions delimited by the solid and dashed blue lines show the excluded region due to our dijet angular distribution
analysis with cuts mcut

jj = 2TeV and mcut
jj = 1.2TeV respectively.

If these operators arise from BSM that are invariant under the SM gauge group and GF (up to

small e⇥ects v2/�2 and Yukawa couplings), the presence of c(8)A ⌅= 0 requires, in the basis A.1.1,

c(8)ut = �c(8)qt = �c(8)qu = c(8)qq = c(8)A . (27)

In other words, the flavor symmetry requires that if the operator O(8)
A is generated, also operators

involving four up-quarks must be present. Bounds from our dijet analysis (mostly from the bounds

on c(8)qu and c(8)qq ) lead then to

c(8)A

�2
� 0.4

TeV2 , (28)

excluding the possibility to fit the recent top asymmetry measurement which requires c(8)A /�2 ⇥ 2

TeV�2 [29].

If we relax the assumption of flavor invariance of the BSM sector, an operator involving four up-

quarks can still be generated from O(8)
A at the one-loop level. The one-loop contribution, involving

tops, is divergent; by regulating it with a hard cut-o⇥ taken to be �, we obtain

c(8)qq =
1

3
c(8)uu = �2c(8)qu ⇤ �(c(8)A )2

4�2
. (29)

In Fig. 4 we show the region of the parameter space that fits the AFB of the top with the region

excluded by dijets using Eq. (29). One can see that dijets with mjj > 2 TeV exclude a large region

of the parameter space, although, as we mentioned before, these results cannot be strictly applied if

� < mjj. For this reason we also show the exclusion region arising from dijets with smaller invariant

masses, mjj > 1.2 TeV.
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At large momenta as compared to the masses of the gauge bosons, these operators induce e⇥ective

four-fermion operators, equivalent to those arising from integrating out a very heavy copy of the

corresponding gauge boson. Therefore our dijet analysis can be conveniently used to put bounds

on these parameters. We show in Fig. 3 our results in the W -Y plane. Although bounds from LEP

[20] are still stronger, this analysis shows that LHC will be competitive when running at a higher

energy. Regarding the Z-parameter our analysis gives the strongest bound up to date:

� 3⇥ 10�3 � Z � 6⇥ 10�4. (24)
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If these operators arise from BSM that are invariant under the SM gauge group and GF (up to

small e⇥ects v2/�2 and Yukawa couplings), the presence of c(8)A ⌅= 0 requires, in the basis A.1.1,

c(8)ut = �c(8)qt = �c(8)qu = c(8)qq = c(8)A . (27)

In other words, the flavor symmetry requires that if the operator O(8)
A is generated, also operators

involving four up-quarks must be present. Bounds from our dijet analysis (mostly from the bounds

on c(8)qu and c(8)qq ) lead then to
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� 0.4

TeV2 , (28)

excluding the possibility to fit the recent top asymmetry measurement which requires c(8)A /�2 ⇥ 2

TeV�2 [29].

If we relax the assumption of flavor invariance of the BSM sector, an operator involving four up-

quarks can still be generated from O(8)
A at the one-loop level. The one-loop contribution, involving

tops, is divergent; by regulating it with a hard cut-o⇥ taken to be �, we obtain
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1
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In Fig. 4 we show the region of the parameter space that fits the AFB of the top with the region

excluded by dijets using Eq. (29). One can see that dijets with mjj > 2 TeV exclude a large region

of the parameter space, although, as we mentioned before, these results cannot be strictly applied if

� < mjj. For this reason we also show the exclusion region arising from dijets with smaller invariant

masses, mjj > 1.2 TeV.
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Conclusions

LHC is already testing the SM quark sector with high accuracy.

Strong bounds are set, 1 - 5 TeV, on single operators and compositeness scale.

Direct production of resonances might be out of reach at LHC.

Indirect effects might be the clue for BSM.

quarks (& gluon) can not be fully composite at the EW scale

but still viable MFV implementation

and compositeness of the top quark (& Higgs)

stay tuned
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