Gauged Flavour Symmetries and their Flavour Phenomenology

Emmanuel Stamou

estamou@ph.tum.de

TU Munich

A. J. Buras, M. V. Carlucci, L. Merlo, & E. Stamou arXiv:1112.4477v2 A. J. Buras, L. Merlo, & E. Stamou

30 May 2012

Part 1: gauging flavour symmetries

◦ anomaly cancellation with exotic fermions

 \circ see-saw for quark masses $m \propto 1/Y$ \circ FCNCs $\propto 1/Y^2$, flavour protection for light generations

 \circ a minimal quark $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$ realisation

[Grinstein et al, '10]

Flavour Gauge Bosons and Flavons

Construction of a TeV gauged flavour model

Recipe:

 $\circ Y_u, Y_d$ flavour-charged singlets under SM ◦ anomaly cancellation ◦ chiral under SM \circ forbid \bar{q}_L^{SM} Y q_R^{SM}

MF_V

−→ add exotic fermions (easy: vector-like under flavour)

See-saw

		Q_L U_R D_R		H	$\mid \Psi_{u_R} \mid$		$\Psi_{d_{R}}\quad \Psi_{u_{L}}$	Ψ_{d_L}	$\mid Y_u \mid Y_d \mid$	
$SU(3)_{Q_L}$	3 ³	$\mathbb{1}$	-1	-1	$\begin{array}{ c c c } \hline 3 \\ \hline \end{array}$	3 ¹	-1	\top	3	3
$SU(3)_{U_R}$	$\mathbf 1$	3 ¹	$\mathbb{1}$	-1	$\overline{1}$	-1	3 ³	$\mathbb{1}$	3	$\mathbf{1}$
$SU(3)_{D_R}$	\perp	$\mathbf{1}$	3 ³	\perp	\perp	\perp	\blacksquare	3 ¹	$\mathbf{1}$	3
$SU(3)_c$	3	3	3		3	\mathcal{S}	3	3		\lceil
$SU(2)_L$	$\overline{2}$	1	\top	$\overline{2}$	\perp	$\mathbf{1}$	$\mathbb{1}$			$\mathbf{1}$
$U(1)_{Y}$	$+\frac{1}{6}$ + $\frac{2}{3}$			$-\frac{1}{3}$ $+\frac{1}{2}$		$+^2/3 -^1/3$	$+\frac{2}{3}$	$-1/3$	$\overline{0}$	$\overline{0}$

Construction of a TeV gauged flavour model

Recipe:

 $\circ Y_u, Y_d$ flavour-charged singlets under SM ◦ anomaly cancellation ◦ chiral under SM \circ forbid \bar{q}_L^{SM} Y q_R^{SM}

MFV

−→ add exotic fermions (easy: vector-like under flavour)

See-saw

[Grinstein et al, '10]

Mass eigenstates and see-saw

Break Flavour

Mass eigenstates and see-saw

Break Flavour

Inverse quark see-saw

See-saw:

$$
\begin{array}{l} m_u m'_u = m_c m'_c = m_t m'_t\\ m_d m'_d = m_s m'_s = m_b m'_b \end{array}
$$

Inverse Hierarchy

For case of large splitting $m \ll m'$ (true except for top-quark):

$$
m \approx \frac{v}{\sqrt{2}} \frac{\lambda M}{\lambda' \langle \hat{Y} \rangle}
$$
\n
$$
m' \approx \lambda' \langle \hat{Y} \rangle
$$
\n**data:**\n
$$
\langle \hat{Y}_{11} \rangle \gg \langle \hat{Y}_{22} \rangle \gg \langle \hat{Y}_{33} \rangle
$$

Tree-level FCNCs automatically suppressed for light generations

$$
d_i \frac{\sqrt{\mu P_{(L,R)}}}{\sqrt{\lambda^m} \sum_{\gamma_{\mu} P_{(L,R)}} d_i} d_j \frac{1}{\langle Y \rangle^2} (\bar{q}_i \gamma^{\mu} P_{(L,R)} q_j)^2
$$

lowest NP scale fixed by $\langle Y_{33} \rangle$
 \rightarrow can be TeV scale!

Non-MFV aspects

 V_{CKM} determined from tree-level processes

 $\propto \gamma_\mu \; P_L \; \cos^i_{uL} \; V_{ij} \; \cos^j_a$ dL ${V}^{ij}_{\text{curv}}$ $V^{ij}_{\rm CKM}$

 V_{CKM} not unitary due to mixing with exotics.

$$
\propto \gamma_\mu \; P_{L,R} \; {\cal G}_d^{ij}
$$

complex couplings −→ "new" phases $\Delta F = 2$ obs. sensitive probes

Part 2: flavour phenomenology

Are sizeable deviations in flavour observables possible?

$$
\circ \Delta F = 2 \qquad (\epsilon_K, \Delta M_{B_d}, \Delta M_{B_s}, S_{\psi K_s}, S_{\psi \phi}, A_{sl}^b)
$$

$$
\circ \Delta F = 1 \qquad (\text{BR}(B^+ \to \tau^+ \nu_\tau), \overline{B} \to X_s \gamma)
$$

◦ constraints and patterns from flavour data

[arXiv:1112.4477v2]

Spectrum

Effective operators $\Delta F = 2$

- \circ loop-induced at μ_{EW}
- \circ in B-system only t' relevant
- in K-system c-modification relevant

NP

 $d_{\mathcal{A}}$

di

 \circ tree-level induced at $\mu_{\hat{M}}$

VLL, VRR

 d_j

 d_i

◦ only 2 lightest gauge bosons relevant

 \hat{A}^m

 d_i

 d_i

 $\gamma_\mu P_{(L,R)}$

 $\gamma_\mu P_{(L,R)}$

¥0

RL 1,2

di

 d_i

 $\,\circ\,$ $Q_{1,2}^{RL}$ QCD enhanced

$\Delta F = 2$ observables

Kaon-sector

 ϵ_K measure of indirect \mathcal{CP} $|\epsilon_K|^{SM} = 1.81(28) \times 10^{-3}$ $|\epsilon_K|^{exp} = 2.228(11) \times 10^{-3}$

$$
\epsilon_K = \frac{\kappa_{\varepsilon} e^{i\varphi_{\varepsilon}}}{\sqrt{2}(\Delta M_K)_{\text{exp}}} \text{Im} M_{12}^K
$$
\n(Brod, Grothanh, '12)

\n(PDC, '10)

B_d -system

 ΔM_{B_d} mass difference $S_{\psi Ks}$ CP-asymmetry in $B_d^0 \rightarrow J/\psi K_S$ $S_{\psi K_s} = \sin(2\beta + 2\phi_{Bd})$ $\beta \simeq 22^{\circ}$ $\phi_{Bd} = ?$

B_s -system

 ΔM_B , mass difference $S_{\psi\phi}$ CP-asymmetry in B^0 \rightarrow $J/\psi\phi$ $S_{\psi\phi} = \sin(2|\beta_s| + 2\phi_{Bs})$ $\beta_s \simeq -1^\circ$ $\phi_{Bs} = ?$ (new LHCb value points to SM) $\overline{A^{b}_{sl}}$ the b-semileptonic like-sign dimuon charge assymmetry $A_{sl}^{b, \rm exp} = (-0.787 \pm 0.172 \pm 0.093) \times 10^{-2}$ (do,11) $A_{sl}^b = \frac{N^{++}-N^{--}}{N^{++}+N^{--}}$

MGF can accomodate the data only for $V_{ub}^{excl.}$ (tree-contr. too small)

E. Stamou: [Gauged Flavour Symmetries and their Flavour Phenomenology](#page-0-0) 12

the future $\epsilon_K - \Delta M_{B_s}$

Clear pattern of different contributions

exotic quarks (purple)

gauge bosons (red)

enhancement of ϵ_K and ΔM_{B_d} .

suppression of ϵ_K no effect on ΔM_{Ba} ,

Large theory errors in both ϵ_K (theo. charm dominated) and in $\Delta M_{B_{d, s}}$ from meson decay constants F_{B_s} and F_{B_d} (lattice input)!

the future $\epsilon_K - \Delta M_B$

Clear pattern of different contributions

exotic quarks (purple)

gauge bosons (red)

enhancement of ϵ_K and $\Delta M_{B_{d-1}}$

suppression of ϵ_K no effect on ΔM_{Ba} ,

Good news: hope for future improvement in both ϵ_K and $\Delta M_B!$

- \circ ϵ_K : matching of MOM- and MS-scheme
- \circ F_B : lattice improving rapidly

 $\Delta M_{B_d}/\Delta M_{B_s}$

 $\text{BR}(B^+\to\tau^+\nu_\tau)/\overline{\Delta M_{B_d}}$

To constraint MGF look at theoretically clean observables:

$$
\frac{\Delta M_{B_d}}{\Delta M_{B_s}} \quad \text{and} \quad \frac{\text{BR}(B^+ \to \tau^+ \nu_{\tau})}{\Delta M_{B_d}}
$$

Can we still have large effects in $S_{\psi \phi}$ and A_{sl}^b after the constraints?

 $\overline{B} \to \overline{X_s} \gamma$

Part 4 : conclusions and outlook

Conclusions and Outlook

Gauging non-abelian sector of the Quark Flavour Symmetry

Theory

- compatible with NP at the TeV scale
- a step towards the explanation of quark masses
- implications beyond flavour?
	- → connection to GUTs [Feldmann, '11]

 \longrightarrow LR symmetry interval and all (Guadagnoli et al, '11)

Phenomenology

- \circ few parameters \rightarrow clear flavour patterns
- $\circ \; \epsilon_K$, $S_{\psi K_s}$, $\Delta M_{B_d}/\Delta M_{B_s}$, $\text{BR}(B^+ \to \tau^+ \nu_\tau)/\Delta M_{B_d}$ and V_{tb} best flavour constraints
- $\circ~$ correct $S_{\psi K_s}$ if V_{ub} small
- $\circ \,$ constraints \longrightarrow increased tension in ${\rm BR}(B^+ \to \tau^+ \nu_\tau)/\Delta M_{B_d}$
- $\circ \,$ constraints \longrightarrow no large effects in $S_{\psi\phi}, \, A^{sl}_b, \, \bar B\to X_s \, \widehat{\gamma}$

Conclusions and Outlook

Gauging non-abelian sector of the Quark Flavour Symmetry

Theory

- compatible with NP at the TeV scale
- a step towards the explanation of quark masses
- implications beyond flavour?
	- → connection to GUTs [Feldmann, '11]

 \longrightarrow LR symmetry interval and all (Guadagnoli et al, '11)

Phenomenology

- \circ few parameters \rightarrow clear flavour patterns
- $\circ \; \epsilon_K$, $S_{\psi K_s}$, $\Delta M_{B_d}/\Delta M_{B_s}$, $\text{BR}(B^+ \to \tau^+ \nu_\tau)/\Delta M_{B_d}$ and V_{tb} best flavour constraints
- $\circ~$ correct $S_{\psi K_s}$ if V_{ub} small
- $\circ \,$ constraints \longrightarrow increased tension in ${\rm BR}(B^+ \to \tau^+ \nu_\tau)/\Delta M_{B_d}$
- $\circ \,$ constraints \longrightarrow no large effects in $S_{\psi\phi}, \, A^{sl}_b, \, \bar B\to X_s \, \widehat{\gamma}$

Thank you.

Backup

Flavour violation in the SM

$$
\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{kinetic}} \n- \left(\mathbf{y}_{\boldsymbol{d}}^{ij} \overline{Q}_{Li} H d_{Rj} + \mathbf{y}_{\boldsymbol{u}}^{ij} \overline{Q}_{Li} \widetilde{H} u_{Rj} + h.c. \right) \n- \left(y_{e}^{ij} \overline{E}_{Li} H e_{Rj} + h.c. \right) \n- V(H)
$$

- $\circ \; y^{ij}_d$ and y^{ij}_u free complex parameters $\hspace{1cm}$ (not all physical)
- may be expressed in terms of masses and mixings of the low energy d.o.f. (up and down quarks)
- $\delta \circ y_{d}^{ij}.y_{u}^{ij} \longrightarrow$ 6 masses, 3 mixing angles, and 1 phase.

the SM "lesson"

masses and flavour violation governed both by the same parameters:

 y_u and y_d

(in the SM masses and mixings are different sides of the same coin)

Masses and Mixings from Data

$$
\begin{pmatrix}\n u & c & t & \cdots \\
v & V_{ud} & V_{us} & V_{ub} & \cdots \\
v & V_{cd} & V_{cs} & V_{cb} & \cdots \\
v & V_{td} & V_{ts} & V_{tb} & \cdots \\
v & V_{td} & V_{ts} & V_{tb} & \cdots\n\end{pmatrix}\n\begin{pmatrix}\n d & \\
s & \\
s & \\
s & \ddots & \ddots\n\end{pmatrix}
$$

- \circ SM accounts for data if V_{CKM} unitary
- SM does not know the origin of the masses and mixings

(they are just y_u and y_d)

◦ understanding the masses and mixings is the distant goal of flavour-physics

> y_u & $y_d \Longleftrightarrow$ masses & mixings is a SM peculiarity

not respected by generic extensions of the SM

Masses and Mixings from Data

- \circ SM accounts for data if V_{CKM} unitary
- SM does not know the origin of the masses and mixings

(they are just y_u and y_d)

◦ understanding the masses and mixings is the distant goal of flavour-physics

> y_u & $y_d \Longleftrightarrow$ masses & mixings is a SM peculiarity

not respected by generic extensions of the SM

The concept of Minimal Flavour Violation

Minimal Flavour Violation y_u and y_d are the only sources of flavour violation

[Chivukula, Georgi, '87 ; Hall, Randall '90 ; Buras et al, 01 ; D'Ambrosio et al, 02]

$$
\text{SM: } y_u \to 0 \& y_d \to 0
$$

sm: ho FV, massless quarks
SM: ordinal ordinal sextra alobal symmetry extra global symmetry $U(3)_{\Omega_X} \times U(3)_{U_R} \times U(3)_{D_R}$

Formalising MFV:

all FV comes from the breaking of $U(3)_{\Omega_L}\times U(3)_{U_R}\times U(3)_{D_R}$

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L}\times U(3)_{U_R}\times U(3)_{D_R}$

$$
\mathcal{L} = -\left(Y_{\bm{d}}^{\bm{i} \bm{j}} \; \overline{Q}_{Li} \; H \; d_{Rj} + Y_{\bm{u}}^{\bm{i} \bm{j}} \; \overline{Q}_{Li} \; \tilde{H} \; u_{Rj} + h.c. \right) + \mathcal{L}_{\rm SMrest} + \mathcal{L}_{\rm UV}
$$

 $\circ Y_u$, Y_d spurion fields transforming under the flavour symmetry ◦ simplest realisation

$$
Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\bar{3}}) \qquad Y_u \sim (\mathbf{3}, \mathbf{\bar{3}}, \mathbf{1})
$$

 \circ FV in \mathcal{L}_{UV} is build out out of flavour-invariant non-renormalisable operators with Y_u and Y_d .

[D'Ambrosio et al, '02]

◦ automatically safe from large FCNC's

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L}\times U(3)_{U_R}\times U(3)_{D_R}$

$$
\mathcal{L} = -\left(Y_{d}^{ij}\ \overline{Q}_{Li}\ H\ d_{Rj} + Y_{u}^{ij}\ \overline{Q}_{Li}\ \tilde{H}\ u_{Rj} + h.c.\right) + \mathcal{L}_{\text{SMrest}} + \mathcal{L}_{\text{UV}}
$$

 \rightarrow setup for building models safe from Flavour

explanation masses and mixings $\mathbb{\hat{I}}$ understanding the breaking of the flavour symmetry Minimisation of scalar potential?[Alonso et al, '11]

Problem Where are the Goldstone modes of the spontaneously broken flavour symmetry?

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L}\times U(3)_{U_R}\times U(3)_{D_R}$

$$
\mathcal{L} = -\left(Y_{d}^{ij}\ \overline{Q}_{Li}\ H\ d_{Rj} + Y_{u}^{ij}\ \overline{Q}_{Li}\ \tilde{H}\ u_{Rj} + h.c.\right) + \mathcal{L}_{\text{SMrest}} + \mathcal{L}_{\text{UV}}
$$

−→ setup for building models safe from Flavour

explanation masses and mixings $\mathbb{\hat{I}}$ understanding the breaking of the flavour symmetry Minimisation of scalar potential?[Alonso et al, '11]

> A way out gauge the flavour symmetry

Lagrangian interactions

$$
\mathcal{L} = \mathcal{L}_{\text{kinetic}} + \underbrace{\mathcal{L}_{\text{interaction}} + \mathcal{L}_{\text{scalar}}(H, Y_u, Y_d)}_{\text{Vector-like under flavour}}
$$
\n
\nVector-like under flavour
\n
$$
SU(3)_{Q_L} : \qquad \lambda_u \underbrace{\overline{Q}_L}_{M_u} \underbrace{\overline{H}_{\underbrace{W}_{uR}}}_{\underbrace{\overline{V}_{uL}}}_{\underbrace{3}_{3}} \underbrace{\lambda_d \underbrace{\overline{Q}_L}_{\underbrace{\overline{Q}_L}_{\underbrace{3}_{3}} H \underbrace{\Psi_{dR}}}_{\underbrace{\overline{V}_{dR}}}_{\underbrace{\overline{S}}}
$$
\n
\n
$$
SU(3)_{D_R} : \qquad M_d \underbrace{\overline{\Psi}_{uL}}_{\underbrace{\overline{S}} \underbrace{U_R}_{\underbrace{3}_{3}}}_{\underbrace{\overline{S}}}
$$
\n
\nAllowed flavour interactions
\n"Vukawa"-type masses only for exotic fields
\nonly 6 new parameters: \qquad \circ 4 couplings λ_u , λ'_u , λ_d , λ'_d ,
\n $\circ 2$ masses M_u , M_d

Is MGF MFV?

- \circ V_{CKM} determined from tree-level processes of mass eigenstates
- \circ rotate all FV to u_{Li} , $Y_u=\hat{Y}_u\cdot V$, mass-insertion notation:

(just like in SM)

 \circ q's still mix with Ψ' s, integrate out heavy Ψ' s $|u\rangle^{\text{mass}} = \cos\theta_u |u\rangle + \sin\theta_u | \Psi_u\rangle$ $|d\rangle^{\text{mass}} = \cos\theta_d |d\rangle + \sin\theta_d | \Psi_d\rangle$

Flavour Gauge Bosons

 \circ mass matrix from kinetic terms of flavons Y_u and Y_d

(like W,Z-masses in SM)

 \circ $SU(3)_O \times SU(3)_U \times SU(3)_D$ realisation

$$
\chi = (A_Q^1, \dots, A_Q^8, A_U^1, \dots, A_U^8, A_D^1, \dots, A_D^8)^T
$$

Mass Lagrangian:

Mass Lagrangian:
\n
$$
\mathcal{L}_{\text{mass}} = \frac{1}{2} \chi^T \mathcal{M}_A^2 \chi
$$
\n
$$
\mathcal{M}_A^2 = \begin{pmatrix} M_{QQ}^2 & M_{QU}^2 & M_{QD}^2 \\ M_{UQ}^2 & M_{UU}^2 & 0 \\ M_{DQ}^2 & 0 & M_{DD}^2 \end{pmatrix}
$$
\n
$$
\text{e.g. } \left(M_{QU}^2 \right)_{ab} = -\frac{1}{2} g_Q g_U \operatorname{Tr} \left[\lambda_{SU(3)}^a \left\langle Y_u \right\rangle^\dagger \lambda_{SU(3)}^b \left\langle Y_u \right\rangle \right]
$$
\n
$$
\text{Diagonalisation} \implies \text{tree-level flavour-violating couplings } \mathcal{G}_{LR}^{ud,i}
$$

Naïve Gauging

- gauging without introducing new fermions
- \circ anomaly cancellation \rightarrow only vector subgroup $(SU(3)_{qV})$ "gaugeable"

$$
\mathcal{L} = -\left(\mathbf{Y}_{\boldsymbol{d}}^{\boldsymbol{i}\boldsymbol{j}}\ \overline{Q}_{Li}\ H\ d_{R\boldsymbol{j}} + \mathbf{Y}_{\boldsymbol{u}}^{\boldsymbol{i}\boldsymbol{j}}\ \overline{Q}_{Li}\ \tilde{H}\ u_{R\boldsymbol{j}} + h.c.\right) + \mathcal{L}_{\mathrm{SMrest}} + \mathcal{L}_{\mathrm{UV}}
$$

data: $\langle Y_{11} \rangle \ll \langle Y_{22} \rangle \ll \langle Y_{33} \rangle$

 \circ NP scale Λ_Y fixed by the smallness of FCNC's.

$$
\mathcal{L}_{\Delta F=2} = -\frac{g^2}{\Lambda_Y^2} \left(\bar{q}_i \gamma_\mu P_{L,R} q_j \right) \left(\bar{q}_j \gamma^\mu P_{L,R} q_i \right)
$$

◦ Lowest NP scale fixed by FCNC's of light generations!

$$
\implies \Lambda_Y \ge 1000 \text{ TeV}
$$
 (Bona et al)

○ Can we evade this? Yes. (Grinstein, Redi, Villadoro '10)

FV of the lightest Gauge Boson

FV of the lightest Gauge Boson

- \circ origin of couplings and masses of lightest boson: $\langle Y_{33} \rangle$
- large hierarchies in couplings
- couplings are complex: "new phases"

(not really new $-V$ has still the only phase in the theory)

Low energy $\Delta F = 2$ observables are very sensitive to such "new phases"!

The problem of scales

Direct constraints

light vector fermions

- \circ LHC searches $m_t' > 475$ GeV and $m_b' > 268$ GeV $\hspace{1cm}$ (CMS)
- $\circ \,$ searches assume 100% $q' \rightarrow qZ$
- not fully applicable here (mixing and higgs channel)

down-sector

 \circ strongest constraint Z-width from modified Zbb coupling

up-sector

- EW precision observables, T -parameter after breaking custodial symmetry
- SM modification included only at LO careful.

non-unitary CKM

- no constraints from light-quarks (¹
- \circ direct tWb coupling constrained by $|V_{tb}|$ $\rightarrow c_{tL} > 0.77$ not very constraining

 $(1st$ row of V_{CKM} !)

Direct constraints

