Gauged Flavour Symmetries and their Flavour Phenomenology

Emmanuel Stamou

estamou@ph.tum.de

TU Munich

A. J. Buras, M. V. Carlucci, L. Merlo, & E. Stamou A. J. Buras, L. Merlo, & E. Stamou arXiv:1112.4477v2 arXiv:1105.5146v2

30 May 2012

Part 1: gauging flavour symmetries

 \circ anomaly cancellation with exotic fermions \circ see-saw for quark masses $m \propto 1/Y$ \circ FCNCs $\propto 1/Y^2$, flavour protection for light generations \circ a minimal quark $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$ realisation (Grinstein et al, '10)

Flavour Gauge Bosons and Flavons

Construction of a TeV gauged flavour model

Recipe:

 $\circ Y_u, Y_d$ flavour-charged singlets under SM \circ anomaly cancellation \circ chiral under SM \circ forbid $\bar{q}_L^{\rm SM} Y q_R^{\rm SM}$

 \longrightarrow MFV

 \rightarrow See-saw

⁽Grinstein et al, '10)

$SU(3)_{Q_L}$		1	1	1			1	1	3	3
$SU(3)_{U_R}$	1	3	1	1	1	1		1	3	1
$SU(3)_{D_R}$	1	1		1	1	1	1		1	3
$SU(3)_c$	3	3	3	1	3	3	3	3	1	1
$SU(2)_L$	2	1	1	2	1	1	1	1	1	1
$U(1)_Y$										

Construction of a TeV gauged flavour model

Recipe:

• Y_u, Y_d flavour-charged singlets under SM • anomaly cancellation • chiral under SM • forbid $\bar{q}_I^{\rm SM} Y q_R^{\rm SM}$

 \longrightarrow MFV

→ add exotic fermions (easy: vector-like under flavour)

 \rightarrow See-saw

(Grinstein et al, '10)

	Q_L	U_R	D_R	H	Ψ_{u_R}	Ψ_{d_R}	Ψ_{u_L}	Ψ_{d_L}	Y_u	Y_d
$SU(3)_{Q_L}$	3	1	1	1	3	3	1	1	3	3
$SU(3)_{U_R}$	1	3	1	1	1	1	3	1	3	1
$SU(3)_{D_R}$	1	1	3	1	1	1	1	3	1	3
$SU(3)_c$	3	3	3	1	3	3	3	3	1	1
$SU(2)_L$	2	1	1	2	1	1	1	1	1	1
$U(1)_Y$	$+^{1}/_{6}$	$+^{2}/_{3}$	$-^{1}/_{3}$	$+^{1}/_{2}$	$+^{2}/_{3}$	$-^{1}/_{3}$	$+^{2}/_{3}$	$-^{1}/_{3}$	0	0

Mass eigenstates and see-saw

Break Flavour

Mass eigenstates and see-saw

Break Flavour

Inverse quark see-saw

See-saw:

Inverse Hierarchy

For case of large splitting $m \ll m'$ (true except for top-quark):

$$m \approx \frac{v}{\sqrt{2}} \frac{\lambda M}{\lambda' \langle \hat{Y} \rangle}$$
 $m' \approx \lambda' \langle \hat{Y} \rangle$
data: $\langle \hat{Y}_{11} \rangle \gg \langle \hat{Y}_{22} \rangle \gg \langle \hat{Y}_{33} \rangle$

Tree-level FCNCs automatically suppressed for light generations

Non-MFV aspects

 V_{CKM} determined from tree-level processes

 $\propto \gamma_{\mu} P_L \underbrace{\cos^i_{uL} V_{ij} \cos^j_{dL}}_{ij}$

 $\ensuremath{\mathit{V}_{\rm CKM}}$ not unitary due to mixing with exotics.

$$\propto \gamma_{\mu} \ P_{L,R} \ {\cal G}_d^{ij}$$

complex couplings \rightarrow "new" phases $\Delta F = 2$ obs. sensitive probes

Part 2: flavour phenomenology

Are sizeable deviations in flavour observables possible?

$$\circ \Delta F = 2 \qquad (\epsilon_K, \Delta M_{B_d}, \Delta M_{B_s}, S_{\psi K_s}, S_{\psi \phi}, A_{sl}^b)$$

$$\phi \Delta F = 1$$
 (BR($B^+ \to \tau^+ \nu_\tau$), $B \to X_s \gamma$)

o constraints and patterns from flavour data

(arXiv:1112.4477v2)

Spectrum

Effective operators

SM-like

- \circ loop-induced at μ_{EW}
- in B-system only t' relevant
- in K-system *c*-modification relevant

NP

 $\circ~$ tree-level induced at $\mu_{\hat{M}}$

VLL,VRR

 d_i

 only 2 lightest gauge bosons relevant

 $\gamma_{\mu} P_{(L,R)}$

 $\gamma_{\mu}P_{(L,R)}$

¥Q

 \hat{A}^m

 d_{i}

 d_i

 d_{a}

 d_i

 d_i

 $\circ \ Q^{RL}_{1,2}$ QCD enhanced

$\Delta F=2$ observables

Kaon-sector

$$\begin{split} \epsilon_{\boldsymbol{K}} & \text{measure of indirect } \mathcal{OP} \\ |\epsilon_{\boldsymbol{K}}|^{\mathrm{SM}} = 1.81(28) \times 10^{-3} \\ |\epsilon_{\boldsymbol{K}}|^{\mathrm{exp}} = 2.228(11) \times 10^{-3} \end{split}$$

$$\epsilon_{K} = \frac{\kappa_{e} e^{i\varphi_{e}}}{\sqrt{2}(\Delta M_{K})_{\exp}} \text{Im} M_{12}^{K}$$
(Brod, Gorbahn, '12)
(PDG, '10)

B_d -system

 ΔM_{B_d} mass difference $S_{\psi K_S}$ CP-asymmetry in $B^0_d \rightarrow J/\psi K_S$ $S_{\psi K_s} =$

$$S_{\psi K_s} = \sin(2\beta + 2\phi_{Bd})$$

$$\beta \simeq 22^\circ \quad \phi_{Bd} = ?$$

B_s -system

 $\begin{array}{ll} \Delta M_{B_s} \mbox{ mass difference} \\ S_{\psi\phi} & CP\mbox{-asymmetry in } B^0_s \rightarrow J/\psi\phi & S_{\psi\phi} = \sin(2|\beta_s|+2\phi_{Bs}) \\ & \beta_s \simeq -1^\circ & \phi_{Bs} =? \\ \hline \hline M^b_{sl} \mbox{ the b-semileptonic like-sign dimuon charge asymmetry} \\ A^b_{sl} = (-0.787\pm 0.172\pm 0.093)\times 10^{-2} & (\mbox{ po.11}) & A^b_{sl} = \frac{N^{++}-N^{--}}{N^{++}+N^{--}} \end{array}$

MGF can accomodate the data only for V_{ub}^{excl} . (tree-contr. too small)

E. Stamou: Gauged Flavour Symmetries and their Flavour Phenomenology

Technische Universität München

the future

Clear pattern of different contributions

exotic quarks (purple)

gauge bosons (red)

enhancement of ϵ_K and $\Delta M_{B_{d,s}}$

suppression of ϵ_K no effect on $\Delta M_{B_{d,s}}$

Large theory errors in both ϵ_K (theo. charm dominated) and in $\Delta M_{B_{d,s}}$ from meson decay constants F_{B_s} and F_{B_d} (lattice input)!

the future

Clear pattern of different contributions

exotic quarks (purple)

gauge bosons (red)

enhancement of ϵ_K and $\Delta M_{B_{d,s}}$

suppression of ϵ_K no effect on $\Delta M_{B_{d,s}}$

Good news: hope for future improvement in both ϵ_K and ΔM_B !

- $\circ \epsilon_K$: matching of MOM- and $\overline{\text{MS}}$ -scheme
- $\circ F_B$: lattice improving rapidly

 $\Delta M_{B_d} / \Delta M_{B_s}$

 ${
m BR}(B^+ o au^+
u_ au)/\Delta M_{B_d}$

To constraint MGF look at theoretically clean observables:

$$rac{\Delta M_{B_d}}{\Delta M_{B_s}}$$
 and $rac{\mathsf{BR}(B^+ o au^+
u_ au)}{\Delta M_{B_d}}$

 A^b_s

Can we still have large effects in $S_{\psi\phi}$ and A^b_{sl} after the constraints?

 $\overline{B}
ightarrow \overline{X_s \gamma}$

Part 4 : conclusions and outlook

Conclusions and Outlook

Gauging non-abelian sector of the Quark Flavour Symmetry

Theory

- compatible with NP at the TeV scale
- a step towards the explanation of quark masses
- o implications beyond flavour?
 - \longrightarrow connection to GUTs

10

 \longrightarrow LR symmetry

(Guadagnoli et al, '11)

(Feldmann, '11)

Phenomenology

- $\circ~$ few parameters \longrightarrow clear flavour patterns
- $\circ~\epsilon_K$, $S_{\psi K_s}$, $\Delta M_{B_d}/\Delta M_{B_s}$, ${\rm BR}(B^+\to\tau^+\nu_\tau)/\Delta M_{B_d}$ and V_{tb} best flavour constraints
- \circ correct $S_{\psi K_s}$ if V_{ub} small
- \circ constraints \longrightarrow increased tension in BR $(B^+ \to \tau^+ \nu_{\tau})/\Delta M_{B_d}$
- \circ constraints \longrightarrow no large effects in $S_{\psi\phi}, A_b^{sl}, \bar{B} \rightarrow X_s \gamma$

Conclusions and Outlook

Gauging non-abelian sector of the Quark Flavour Symmetry

Theory

- compatible with NP at the TeV scale
- a step towards the explanation of quark masses
- o implications beyond flavour?
 - \longrightarrow connection to GUTs

(Feldmann, 11)

 \longrightarrow LR symmetry

(Guadagnoli et al, '11)

Phenomenology

- $\circ~$ few parameters \longrightarrow clear flavour patterns
- $\circ~\epsilon_K$, $S_{\psi K_s}$, $\Delta M_{B_d}/\Delta M_{B_s}$, ${\rm BR}(B^+\to\tau^+\nu_\tau)/\Delta M_{B_d}$ and V_{tb} best flavour constraints
- $\circ \text{ correct } S_{\psi K_s} \text{ if } V_{ub} \text{ small}$
- \circ constraints \longrightarrow increased tension in ${
 m BR}(B^+ \to \tau^+ \nu_{\tau})/\Delta M_{B_d}$
- \circ constraints \longrightarrow no large effects in $S_{\psi\phi}, A_b^{sl}, \bar{B} \rightarrow X_s \gamma$

Thank you.

Backup

Flavour violation in the SM

$$\mathcal{L}_{SM} = \mathcal{L}_{kinetic} - \left(\boldsymbol{y_d^{ij}} \, \overline{Q}_{Li} \, H \, d_{Rj} + \boldsymbol{y_u^{ij}} \, \overline{Q}_{Li} \, \tilde{H} \, u_{Rj} + h.c. \right) \\ - \left(\boldsymbol{y_e^{ij}} \, \overline{E}_{Li} \, H \, e_{Rj} + h.c. \right) \\ - V(H)$$

- $\circ \; y^{ij}_d$ and y^{ij}_u free complex parameters (not all physical)
- may be expressed in terms of masses and mixings of the low energy d.o.f.
 (up and down quarks)
- $\cdot y^{ij}_d, y^{ij}_u \longrightarrow$ 6 masses, 3 mixing angles, and 1 phase.

the SM "lesson"

masses and flavour violation governed both by the same parameters:

 $oldsymbol{y}_u$ and $oldsymbol{y}_d$

(in the SM masses and mixings are different sides of the same coin)

Masses and Mixings from Data

$$\begin{pmatrix} u & c & t \\ & & \\ &$$

- $\circ~$ SM accounts for data if $\mathit{V}_{\rm CKM}$ unitary
- SM does not know the origin of the masses and mixings

(they are just y_u and y_d)

 understanding the masses and mixings is the distant goal of flavour-physics

 $y_u \And y_d \iff$ masses & mixings is a SM peculiarity

not respected by generic extensions of the SM

Masses and Mixings from Data

- \circ SM accounts for data if $V_{\rm CKM}$ unitary
- $\circ\,$ SM does not know the origin of the masses and mixings

(they are just y_u and y_d)

 understanding the masses and mixings is the distant goal of flavour-physics

 $y_u \And y_d \iff masses \And mixings$ is a SM peculiarity

not respected by generic extensions of the SM

The concept of Minimal Flavour Violation

 $\begin{array}{c} \textbf{Minimal Flavour Violation} \\ y_u \text{ and } y_d \text{ are the only sources of} \\ flavour violation \end{array}$

(Chivukula, Georgi, '87; Hall, Randall '90; Buras et al, 01; D'Ambrosio et al, 02)

SM:
$$y_u \to 0 \& y_d \to 0$$

Formalising MFV:

all FV comes from the breaking of $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

$$\mathcal{L} = -\left(Y_d^{ij} \,\overline{Q}_{Li} \,H \,d_{Rj} + Y_u^{ij} \,\overline{Q}_{Li} \,\tilde{H} \,u_{Rj} + h.c.\right) + \mathcal{L}_{\rm SMrest} + \mathcal{L}_{\rm UV}$$

 $\circ~Y_u$, Y_d spurion fields transforming under the flavour symmetry $\circ~$ simplest realisation

$$Y_d \sim ({\bf 3},{f 1},{f ar 3}) \qquad Y_u \sim ({f 3},{f ar 3},{f 1})$$

• FV in \mathcal{L}_{UV} is build out out of flavour-invariant non-renormalisable operators with Y_u and Y_d .

(D'Ambrosio et al, '02)

automatically safe from large FCNC's

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

$$\mathcal{L} = -\left(\boldsymbol{Y_d^{ij}} \ \overline{Q}_{Li} \ H \ d_{Rj} + \boldsymbol{Y_u^{ij}} \ \overline{Q}_{Li} \ \tilde{H} \ u_{Rj} + h.c.\right) + \mathcal{L}_{\rm SMrest} + \mathcal{L}_{\rm UV}$$

ightarrow setup for building models safe from Flavour

explanation masses and mixings the understanding the breaking of the flavour symmetry Minimisation of scalar potential?(Alonso et al, 11)

Problem

Where are the Goldstone modes of the spontaneously broken flavour symmetry?

The implications of Minimal Flavour Violation

global symmetry $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

$$\mathcal{L} = -\left(\boldsymbol{Y_d^{ij}} \ \overline{Q}_{Li} \ H \ d_{Rj} + \boldsymbol{Y_u^{ij}} \ \overline{Q}_{Li} \ \tilde{H} \ u_{Rj} + h.c.\right) + \mathcal{L}_{\rm SMrest} + \mathcal{L}_{\rm UV}$$

 \longrightarrow setup for building models safe from Flavour

explanation masses and mixings
 understanding the breaking of the flavour symmetry
 Minimisation of scalar potential?(Alonso et al, 11)

A way out gauge the flavour symmetry

Lagrangian interactions

$$\mathcal{L} = \mathcal{L}_{\text{kinetic}} + \mathcal{L}_{\text{interaction}} + \mathcal{L}_{\text{scalar}}(H, Y_u, Y_d)$$
Vector-like under flavour
$$SU(3)_{Q_L} : \qquad \lambda_u \quad \overline{Q_L} \quad \tilde{H} \quad \Psi_{uR} \qquad \lambda_d \quad \overline{Q_L} \quad H \quad \Psi_{dR} \qquad \\ SU(3)_{U_R} : \qquad M_u \quad \overline{\Psi}_{uL} \quad U_R \qquad \\ SU(3)_{D_R} : \qquad M_d \quad \overline{\Psi}_{dL} \quad U_R \qquad \\ M_d \quad \overline{\Psi}_{dL} \quad D_R \qquad \\ \\ \text{Allowed flavon interactions} \qquad \\ \begin{array}{c} \mathbb{Y}_{\text{ukawa}''-\text{type masses}} \qquad \lambda'_u \quad \overline{\Psi}_{uL} \quad Y_u \quad \Psi_{uR} \qquad \lambda'_d \quad \overline{\Psi}_{dL} \quad Y_d \quad \Psi_{dR} \qquad \\ \\ \text{only for exotic fields} \qquad \\ \begin{array}{c} \mathbb{Y}_{uL} \quad \mathbb{Y}_u \quad \Psi_{uR} \qquad \lambda'_d \quad \overline{\Psi}_{dL} \quad Y_d \quad \Psi_{dR} \qquad \\ \\ \mathbb{Y}_{uL} \quad \mathbb{Y}_u \quad \Psi_{uR} \quad \lambda'_d \quad \overline{\Psi}_{dL} \quad \mathbb{Y}_d \quad \Psi_{dR} \qquad \\ \\ \text{old flavon interactions} \qquad \\ \end{array}$$

Is MGF MFV?

- $\circ V_{CKM}$ determined from tree-level processes of mass eigenstates
- rotate all FV to u_{Li} , $Y_u = \hat{Y}_u \cdot V$, mass-insertion notation:

(just like in SM)

• q's still mix with Ψ 's, integrate out heavy Ψ 's $|u\rangle^{\text{mass}} = \cos \theta_u |u\rangle + \sin \theta_u |\Psi_u\rangle \quad |d\rangle^{\text{mass}} = \cos \theta_d |d\rangle + \sin \theta_d |\Psi_d\rangle$

Flavour Gauge Bosons

 \circ mass matrix from kinetic terms of flavons Y_u and Y_d

(like W,Z-masses in SM)

 $\circ ~SU(3)_Q \times SU(3)_U \times SU(3)_D$ realisation

e.g. (M

$$\chi = \left(A_Q^1, \dots, A_Q^8, A_U^1, \dots, A_U^8, A_D^1, \dots, A_D^8\right)^T$$

Mass Lagrangian:

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \chi^T \mathcal{M}_A^2 \chi$$
$$\mathcal{M}_A^2 = \begin{pmatrix} M_{QQ}^2 & M_{QU}^2 & M_{QD}^2 \\ M_{UQ}^2 & M_{UU}^2 & 0 \\ M_{DQ}^2 & 0 & M_{DD}^2 \end{pmatrix}$$
$$^2_{QU}_{ab} = -\frac{1}{2} g_Q g_U Tr \left[\lambda_{SU(3)}^a \langle Y_u \rangle^\dagger \lambda_{SU(3)}^b \langle Y_u \rangle \right]$$
tree-level flavour-violating

couplings $\mathcal{G}_{IB}^{ud,i}$

Diagonalisation \Longrightarrow

Naïve Gauging

- gauging without introducing new fermions
- anomaly cancellation \rightarrow only vector subgroup ($SU(3)_{qV}$) "aquaeable"

$$\mathcal{L} = -\left(Y_d^{ij} \,\overline{Q}_{Li} \,H \,d_{Rj} + Y_u^{ij} \,\overline{Q}_{Li} \,\tilde{H} \,u_{Rj} + h.c.\right) + \mathcal{L}_{\text{SMrest}} + \mathcal{L}_{\text{UV}}$$

data: $\langle Y_{11} \rangle \ll \langle Y_{22} \rangle \ll \langle Y_{33} \rangle$

 $\circ~$ NP scale Λ_Y fixed by the smallness of FCNC's.

$$\mathcal{L}_{\Delta F=2} = -\frac{g^2}{\Lambda_Y^2} \left(\bar{q}_i \gamma_\mu P_{L,R} q_j \right) \left(\bar{q}_j \gamma^\mu P_{L,R} q_i \right)$$

• Lowest NP scale fixed by FCNC's of light generations!

$$\implies \Lambda_Y \ge 1000 \text{ TeV}$$

(Bona et al)

• Can we evade this? Yes.

(Grinstein, Redi, Villadoro '10)

FV of the lightest Gauge Boson

E. Stamou: Gauged Flavour Symmetries and their Flavour Phenomenology

Technische Universität München

FV of the lightest Gauge Boson

- $\circ\,$ origin of couplings and masses of lightest boson: $\langle {
 m Y}_{33}
 angle$
- large hierarchies in couplings
- couplings are complex: "new phases"

(not really new – V has still the only phase in the theory)

Low energy $\Delta F = 2$ observables are very sensitive to such "new phases"!

The problem of scales

Direct constraints

light vector fermions

- $\circ~$ LHC searches $m_t^\prime > 475~$ GeV and $m_b^\prime > 268~$ GeV
- $\circ~{\rm searches}~{\rm assume}~100\%~q'\to qZ$
- not fully applicable here

(mixing and higgs channel)

(CMS)

down-sector

 \circ strongest constraint *Z*-width from modified *Zbb* coupling

up-sector

- EW precision observables, *T*-parameter after breaking custodial symmetry
- SM modification included only at LO careful.

non-unitary CKM

- no constraints from light-quarks
- direct *tWb* coupling constrained by $|V_{tb}|$ $\rightarrow c_{tL} > 0.77$ not very constraining

 $(1^{\underline{st}} \text{ row of } V_{CKM}!)$

Direct constraints

