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Legal disclaimer

I assume that the hint for a 125 GeV Higgs is a 125 GeV Higgs

rather than a statistical fluctuation or a superluminal cable

While this is believed to be a correct information, nobody makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accu-
racy, completeness, or usefulness of the information. Reference herein to any
specific experiment does not necessarily constitute or imply its endorsement,
recommendation, or favoring.

By not abandoning the room you accept the above assumption.

Thank you



Is the Higgs standard?

with P.P. Giardino, K. Kannike, M. Raidal



Motivation

Naturalness suggests that light stops or similar new physics affect the Higgs
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Testing the Higgs is a way to test naturalness



Observables

mh = 125GeV is a favorable mass for LHC; several BR

BR(h → b̄b) = 58%, BR(h → WW
∗) = 21.6%, BR(h → τ

+
τ
−) = 6.4%,

BR(h → ZZ
∗) = 2.7%, BR(h → gg) = 8.5%, BR(h → γγ) = 0.22%

and production mechanisms

σ(pp → h) = (15.3± 2.6) pb, σ(pp → jjh) = 1.2pb,
σ(pp → Wh) = 0.57pb, σ(pp → Zh) = 0.32pb,

allow to disentangle Higgs couplings and test Higgs properties.

Fit needed: e.g. changing the higgs/bottom coupling also changes all BR.



Fermiophobic searches

We included all data after Moriond2012. In particular these ones are unsafe:

CMS looked for pp → jjγγ measuring, at mh ≈ 125GeV:

[(0.03± 0.02)σ(pp → h) + σ(pp → jjh)]×BR(h → γγ) = SM× (3.3± 1.1)

ATLAS looked for pp → γγ with pTγγ > 40GeV measuring

[0.3σ(pp → h) + σ(pp → Wh,Zh, jjh)]×BR(h → γγ) = SM× (3.3± 1.1)

This format would be perfect for future data releases. So far we have to get
weights of production channels by asking or doing MC simulations and...



Data

Likelihoods not released due to peculiar politics of particle physics. We use:

µ ≈ R
95%
observed −R

95%
expected, σ =

R
95%
expected

2
,



Higgs data: CMS, ATLAS, CDF, D0
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SM fit is good: χ
2 ≈ 17 (15 dof), the average rate is 1.1± 0.2, and

observed rate

SM rate
=






2.1± 0.5 photons
0.5± 0.3 vectors: W and Z

1.3± 0.5 fermions: b and τ

.

New 2012 data will reduce errors by a factor of ∼ 2



Non-standard BR for loop processes
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Non standard best fits
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Fits to Higgs couplings: dysfermiophilia

Latest fermiophobic analyses prefer enhanced h → γγ obtained for yt ≈ −y
SM
t

.
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Global fit
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Fitting the Higgs invisible width

( )
A referee believes that this cannot be done:

“Only ratios of couplings can be fitted. I do
not see how the authors can rectify their paper
without a complete change of analysis strategy.
Consequently, a new revised version will be un-
acceptable as well”.

Let’s see...



Fitting the Higgs invisible width

Data can test and disfavor an invisi-
ble width because gg → h and h → gg

are related as well known since Breit-
Wigner

σ(gg → h)
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Result:

BRinv = 0±25% depending on the fit
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Higgs or radion?

A ‘radion’ particle ϕ coupled to the trace of Tµν can mimic the Higgs:
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At tree level, it like a Higgs with all couplings rescaled by R =
√
2v/Λ.

The difference arises at quantum level because scale invariance is anomalous:

A = −7
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a
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So ϕ ↔ gg is strongly enhanced and ϕ → γγ changed.

Fit almost as good as the SM Higgs, best at R = 0.28±0.03 (i.e. Λ ≈ 870GeV).



From the EW scale

to the Planck scale

With Degrassi, di Vita, Miró, Espinosa, Giudice, Isidori and the SM



Mh =125 GeV. And now?

RGE running can make λ negative or non-perturbative
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For the measured masses both λ and its β-function vanish around MPl!!?
(This would be the main message bla bla quantum gravity bla bla)

NNLO corrections are like a ±3GeV uncertainty in mh: compute them!



NNLO

3loop RGE + 2 loop potential + 2 loop matching at the weak scale

λ ↔ Mh at NNLO is the main effect, because g3 and yt get big at low E:
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Status now: full g3, yt, λ at NNLO, g, g� at NLO: −1GeV shift towards instability



From the EW scale to the Planck scale
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The SM vacuum is metastable
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Vacuum stability is excluded at 2σ (98% C.L. one sided) for Mh < 126GeV.

The main uncertainty is Mt, which will soon be measured better.



Implications: Higgs inflation?

A) Criticality allows inflation with a plateau or a second minimum. Needs
adjustments. In practice it predicts λ = βλ = 0 and so...
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B) Inflation with a non-minimal coupling to gravity, |H|2R. Maybe it allows
inflation or maybe the theory is uncontrollable. In practice it predicts λ > 0.



Veltman throat at the Planck scale?
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Tree level stabilization
New physics can easily stabilize the SM potential. Lots of possibilities.

The simplest possibility is a singlet S with a vev (possibly the axion):

V = λH
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Higgs and SUSY

with G. Giudice



125 GeV is in no man’s land

SM is stable up to the Planck scale for mh
>
∼

130GeV but can go down to 115

MSSM at the weak scale
SM
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MSSM with weak scale SUSY likes mh
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120GeV but can go up to 130



SUSY is dead...

... mh ≈ 125GeV needs quasi-maximal stop mixing or beyond-MSSM...

... naturalness of weak scale SUSY is mostly gone (KFT or light t̃, b̃?)

... g − 2 regions are getting excluded in the CMSSM (or LHC-phobic SUSY...)
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But SUSY is the king of BSM so...



...Long live SUSY!

Time to consider mSUSY � MZ and compute mh(mSUSY, tanβ):

• Split-SUSY (SUSY scalars at mSUSY and SUSY fermions around MZ).
Gives good unification and maybe makes theoretical sense.

• High-Scale-SUSY (all sparticles at mSUSY) aka “Super-Split-SUSY”.

Such a nice joke that its authors forgot to notice that there is one prediction
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λ(mh,mSUSY)
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Full NLO computation

The total result does not depend on the regularization scheme:
One loop thresholds at the weak scale

+

One loop thresholds at the SUSY scale

+

2 loop Split-SUSY RGE between MZ and mSUSY
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Uncertain uncertainties at high energy

mSUSY � MZ allows to get analytic expressions for everything, but one loop
thresholds at the SUSY scale depend on unknown heavy sparticle masses:
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In non-minimal SUSY models one can even have tree level corrections, positive
or negative. E.g. in the NMSSM λNNHuHd +MN
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Or neutrino Yukawa couplings in see-saw models.

For example, the theory of everything could be N = 1 SUSY with E6 unification
broken at the Planck scale by 3 fundamentals 27i. The Higgs is one slepton
that remains light due to ant**pic. The Yukawa couplings come from:

W = λijk27i27j27k



Effect of SM uncertainties

104 106 108 1010 1012 1014 1016 1018
110

120

130

140

150

160

Supersymmetry breaking scale in GeV

H
ig
gs
m
as
sm

h
in
G
eV

Predicted range for the Higgs mass

Split SUSY

High�Scale SUSY

tanΒ � 50
tanΒ � 4
tanΒ � 2
tanΒ � 1

Experimentally favored

Thickness is ±1σ on α3 and on Mt. Theory error is now ±1GeV. Extra
uncertainties coming from unknown SUSY thresholds are not in the figure.



“Central values” for mSUSY and tanβ
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Implications for mSUSY and tanβ

104 106 108 1010 1012 1014 1016 1018
1

10

2

20

3

30

4
5
6

8

Supersymmetry breaking scale in GeV

ta
nΒ

High�Scale supersymmetry

mh � 124 GeV
68, 95, 99� CL

103 104 105 106 107 108 109 1010
1

10

2

20

3

30

4
5
6

8

Supersymmetry breaking scale in GeV
ta
nΒ

Split supersymmetry

mh � 124 GeV
68, 95, 99� CL

mSUSY ≈ MZ and maximal stop mixing and large tanβ?
mSUSY ≈ (4π)2MZ and moderate tanβ? Maybe M2 ≈ 3TeV and M3 =?
mSUSY ≈ MPl and tanβ = 1? Disfavored, unless extra couplings come in



Conclusions

• SUSY: at the weak scale, or one loop above, or much above.

• mh ≈ 125GeV means λ small and negative at the Planck scale (98% C.L.).
m

2 ≈ 0, λ ≈ 0: Higgs potential is doubly critical. Accident or hint?

• SM Higgs gives a good fit to data. Reduced gg → h and enhanced h → γγ

improves the fit. Too good fit is just over-fitting fluctuations?

It could be the last particle. Carpe diem.


