Distinguishing SUSY models at the LHC $${\rm E_6SSM}$$ vs MSSM

Patrik Svantesson

University of Southampton P.Svantesson@soton.ac.uk

Collaborators: A. Belyaev, J. Hall, S. King

arXiv:1203.2495 [hep-ph]

PLANCK 2012 Warsaw

May 29, 2012

Outline

1 MSSM

- μ -problem
- Beyond MSSM

2 E_6 SSM

- A light LSP
- Dark matter constraints

3 Gluino decays

• SUSY searches at the LHC

Conclusions

MSSM

MSSM

MSSM superpotential:

$$W = y_u \bar{u} Q H_u + y_d \bar{d} Q H_d + y_e \bar{e} L H_d + \mu H_u H_d$$

Minimization of Higgs potential gives:

$$rac{m_Z^2}{2} = -|\mu^2| + rac{m_{H_d}^2 - m_{H_u}^2 an^2eta}{ an^2eta - 1}$$

• We expect
$$\mu \sim m_{\sf soft} \sim {\cal O}({\sf TeV})$$

 $\bullet\,$ But the $\mu\text{-term}$ is SUSY preserving so why

$$\mu \sim m_{\sf soft}$$
 rather than $\mu \sim M_{Pl}$?

One common way to solve the μ problem is to introduce a scalar, S.

$$\lambda SH_uH_d$$
 and $\langle S
angle = rac{s}{\sqrt{2}} \sim m_{
m soft} \sim 1 {
m TeV}$ \Rightarrow $\mu = rac{\lambda s}{\sqrt{2}}$

But you have introduced a new global U(1) symmetry and broken it, resulting in a massless axion, which we haven't observed.

- **NMSSM:** A cubic term, S^3 , is also added, breaking the U(1) down to a discrete Z_3 . This could lead to cosmological domain walls and overclosure of the Universe.
- **USSM:** The U(1) is gauged and a massive Z' appear. However, the theory is not anomaly free.
- **E**₆**SSM**: The gauged U(1) is a remnant of a broken E_6 . Anomaly cancellation is assured by having particles in complete **27**s of E_6 at the TeV scale.

E_6SSM

Patrik Svantesson (Uni. of Southampton) E₆SSM vs MSSM gluino phenomenology

Neutralinos

Only the third generation H_d , H_u and S get VEVs and can be identified with the MSSM (USSM) states. The first two inert generations of the Higgs sector are still important.

$$\tilde{\chi}_{\text{int}}^{0} = (\underbrace{\tilde{B} \quad \tilde{W}^{3} \quad \tilde{H}_{d}^{0} \quad \tilde{H}_{u}^{0}}_{\text{MSSM}} \mid \tilde{S} \quad \tilde{B}' \quad [\overbrace{\tilde{H}_{d2}^{0} \quad \tilde{H}_{u2}^{0} \quad \tilde{S}_{2}}^{\text{inert}} \mid \widetilde{H}_{d1}^{0} \quad \tilde{H}_{u1}^{0} \quad \tilde{S}_{1})^{T}$$

- The lightest neutralino has a mass $m_{\tilde{\chi}^0_1} \sim rac{v^2}{s}$
- The VEV s determines the Z^\prime mass and needs to be larger than 3.5 TeV

 $\Rightarrow m_{ ilde{\chi}_1^0} \sim \mathcal{O}(10 \, GeV)$

• LSP annihilation can occur at an acceptable rate in the early universe through a Z or *h*-resonance

Dark matter constraints

With $m_{\tilde{g}} = 800$ GeV we scan the parameter space to check constraints on the direct detection cross section, σ_{SI} , and relic density, $\Omega_{\tilde{\chi}_{*}^{0}}h^{2}$

Gluino decays at the LHC

- $pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 + SM$ particles
- We consider the case $m_{\tilde{g}} < m_{\tilde{q}}$
- The gluino, bino and wino masses are matched between the models
- Gluino decay chain length, I:

$$I = N_{\tilde{\chi}^0 \in \mathsf{chain}} + N_{\tilde{\chi}^\pm \in \mathsf{chain}}$$

• Effective gluino decay chain length, $I_{eff} = \sum_{I} I \cdot P(I)$, where P(I) is the probability for a decay chain length I

argino and neutralino masses		MSSM	E6SSM-I	E6SSM-II	E6SSM-III	E6SSM-IV	E ₆ SSM-V	E6SSM-VI	1
	$tan \beta$	10	1.5	1.42	1.77	3	1.42	1.42	Γ
	$A_t = \begin{array}{c} S \\ \mu \\ A_b \\ M_A \end{array} = A_\tau$	1578 -2900 302.5	3700 (1439) -2200 2736	5268 (2228) -2684 2791	5418 (-1770) 476.2 2074	5500 (-1556) 4638 4341	5268 (2228) -2684 4010	5268 (2228) -2684 4000	[GeV]
	х ⁰	148.7	148.6	149.1	151.2	150.6	149.1	149.1	\equiv
	х ма	302.2	296.8	296.8	303.7	301.7	296.8	296.8	_
	$\tilde{\chi}_{M3}^{0/2}$	1582	1254	2233	1766	1557	2233	2233	GeV
	$\tilde{\chi}_{M4}^{0/3}$	1584	1468	2246	1771	1558	2246	2246	[
	$\tilde{\chi}_{M1}^{\pm}$	302.2	298.7	299.2	300.9	300.4	299.2	299.2	
	$\tilde{\chi}_{M2}^{\pm}$	1584	1440	2229	1771	1557	2229	2229	
		-	1420	1835	1909	1937	1835	1835	5
	$\tilde{\chi}_{1/2}^{0'1}$	-	1459	2003	2062	2087	2003	2003	≗
	$\tilde{\chi}_{F1}^{0}$	-	62.7	43.5	45.2	0	0	0.00011	\square
	$\tilde{\chi}_{F2}^{\delta^{\perp}}$	-	62.8	48.6	53.2	0	0	1.53	
	$\tilde{\chi}_{F3}^{0}$	-	119.9	131.3	141.6	164.1	119.9	120.1	6
	$\tilde{\chi}_{F4}^{\sigma}$	-	121.1	163.6	187.4	164.1	119.9	122.8	ڪ
	$\tilde{\chi}_{E5}^{\sigma}$	-	183.1	197.0	227.8	388.9	185.8	185.8	
	$\tilde{\chi}_{E6}^{0}$	-	184.4	224.3	265.6	388.9	185.8	187.0	
	$\tilde{x}_{\overline{n}}^{\pm}$	-	109.8	119.9	122.7	164.1	119.9	119.9	
Š	$m_{\tilde{\chi}_{ro}^{\pm}}^{\pi_{E1}}$	-	117.8	185.8	225.1	388.9	185.8	185.8	
-		124.4	125.4	133.8	116.3	124.7	126.1	125.8	ল
obabilities of ain lengths	^{<i>m</i>} <i>t</i> ₁	1878	1917	1916	2042	1885	1917	1917	<u></u>
	P(l = 1)	0.188	< 10 ⁻⁹	$< 10^{-5}$	$< 10^{-5}$	0.1727	< 10 ⁻⁸	$< 10^{-12}$	Г
	P(I = 2)	0.812	$< 10^{-4}$	0.01524	0.1723	0.8273	0.01	$< 10^{-5}$	
	P(I = 3)	0	0.1746	0.2336	0.7986	$< 10^{-0}$	0.2	0.1721	
	P(I = 4)	0	0.8196	0.7512	0.02915	< 10-15	0.8	0.8280	
ዊ ብ	P(l = 5)	0	0.0058	< 10 ⁻⁷	0	0	< 10 ⁻¹⁵	0	
	Ωh^2	0.00628	0.00114	0.0006842	0.0006937	0.101	0.00154		
	σ_{SI}	0.401×10^{-9}	15.34×10^{-8}	9.35×10^{-8}	16.35×10^{-8}	3.75×10^{-11}	3.98×10^{-13}		[pb]

Benchmarks

Patrik Svantesson (Uni. of Southampton) E₆SSM vs MSSM gluino phenomenology

Missing transverse momentum

 A longer decay chain means, in general, more visible particles radiated

 \Rightarrow more p_T is distributed to visible particles

• E₆SSM show less missing transverse momentum in collider experiments

Lepton multiplicity

- Longer decay chain \Rightarrow more leptons
- Close degeneracy in spectrum ⇒ soft leptons
- Experiments can manage as low as 5 GeV *p*_T leptons
- One can use multi lepton requirement instead of p_T^{miss} cuts.

Lepton: μ or e with $|\eta| < 2.5$, $p_T > 10$ GeV and $\Delta R(lep, jet) > 0.5$

LHC @ 7 TeV: 0 leptons

LHC @ 7 TeV: 1-2 leptons

LHC @ 7 TeV: 3-4 leptons

LHC @ 8 TeV: 3 leptons

LHC @ 14 TeV: 3 leptons

Summary

- Need to look beyond the MSSM.
 - $\bullet\,$ The E_6SSM might have the solution to the $\mu\text{-problem}$
- The E_6SSM has a richer phenomenology than the MSSM
- Longer gluino decays at colliders would mean
 - Less missing transverse momentum
 - More visible transverse momentum
 - More leptons
- SUSY searches relying on large p_T^{miss} is not efficient for models with longer decay chains
- Multi-lepton channels provide a tool for distinguishing SUSY models with different decay chain lengths
- Multi-lepton channels are important for discovering models sensitive to p_T^{miss}-cuts

Thanks!