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Dark Matter 

What do we know?
ΩDM ≅ 0.23 

electically neutral 

non-baryonic

collisionless 

Cold -> Large scale 

stucture

WIMPs are good candidates:
motivation from particle physics
right relic abundance comes out naturally (WIMP miracle)
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DM with Yukawa-like interactions

heavy DM interacts through light force carrier Φ

repeated exchange of Φ 

-> Sommerfeld effect

multiply cross-section by

enhancement factor S

resonances expected 

near bound state:

 off resonance S∼v-1

 resonance S∼v-2

Φ

Φ

Φ

χ

χ {

S(v) σχχ→ΦΦ

{

gχ

From this result, we expect that the Sommerfeld en-
hancement will exhibit a series of resonances for spe-
cific values of the particle mass spaced in a 1 : 4 : 9 : ...
fashion. The behaviour of the cross section close to
the resonances can be better understood by approx-
imating the electroweak potential by a well poten-
tial, for example: V (r) = −αmVθ(R − r), where
R = m−1

V is the range of the Yukawa interaction, and
the normalization is chosen so that the well poten-
tial roughly matches the original Yukawa potential at
r = R. The external solution satisfying the bound-
ary conditions at infinity is simply an incoming plane
wave, ψout(r) ∝ eikoutr, with kout = mβ. The inter-
nal solution is: ψin(r) = Aeikinr + Be−ikinr, where
kin =

√

k2
out + αmmV # √

αmmV (the last approxi-
mate equality holds because β % β∗). The coefficients
A and B are as usual obtained by matching the wave
function and its first derivative at r = R; then the
enhancement is found to be:

S =

[

cos2 kinR +
k2

out

k2
in

sin2 kinR

]−1

. (7)

When cos kinR = 0, i.e., when
√

αm/mV = (2n +
1)π/2, the enhancement assumes the value k2

in/k2
out #

β∗2/β2 & 1. This is however cut off by the finite
width of the state.

In summary, the qualitative features that we expect
to observe are
i) at large velocities (β & α) there is no enhancement,
S # 1;
ii) in the intermediate range β∗ % β % α, the en-
hancement goes like 1/v: S # πα/β, this value being
independent of the particle mass;
iii) at small velocities (β % β∗), a series of resonances
appear, due to the presence of bound states. Close
to the resonances, S # (β∗/β)2. In this regime, the
enhancement strongly depends on the particle mass,
because it is this that determines whether we are close
to a resonance or not. Similar results have been inde-
pendently obtained in Ref. [16].

We show the result of the numerical integration of
Eq. (2) in Figure 2, where we plot the enhancement
S as a function of the particle mass m, for different
values of β. We choose specific values of the boson
mass mV = 90 GeV and of the gauge coupling α =
α2 # 1/30. These values correspond to a particle
interacting through the exchange of a Z boson.

We note however that, as can be seen by the form
of the equation, the enhancement depends on the bo-
son mass only through the combination ε = mV/m,
so that a different boson mass would be equivalent
to rescaling the abscissa in the plot. Moreover, the
evolution of the wave function only depends on the
two quantities α/ε and β/ε, so that a change α → α′

in the gauge coupling would be equivalent to: β →
β′ = α′

α β, ε → ε′ = α′

α ε. This shows that Fig. 2 does
indeed contain all the relevant information on the be-
haviour of the enhancement S.

We see that the results of the numerical evaluation
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FIG. 2: Sommerfeld enhancement S as a function of
the dark matter particle mass m, for different values of
the particle velocity. Going from bottom to top β =
10−1, 10−2, 10−3, 10−4, 10−5.

agree with our qualitative analysis above. When β =
10−1 (bottom curve), we are in the β > α # 3× 10−2

regime and there is basically no enhancement. The
next curve β = 10−2 is representative of the β >∼ β∗

regime, at least for m larger than a few TeV. The en-
hancement is constant with the particle mass and its
value agrees well with the expected value πα/β # 10.
The drop of the enhancement in the mass region be-
low ∼ 3 TeV is due to the fact that here β <∼ β∗,
and that there are no resonances for this value of the
mass. Decreasing β again (top three curves, corre-
sponding to β = 10−3, 10−4, 10−5 from bottom to
top) we observe the appearance of resonance peaks.
The first peak occurs for m = m = 4.5 TeV, so that
expression (6) based on the analogy with the hydro-
gen atom overestimates the peak position by a factor
2. However, the spacing between the peaks is as ex-
pected, going like n2, as the next peaks occur roughly
at m = 4, 9, 16 m. The height of the first peak agrees
fairly well with its expected value of (β∗/β)2. The
other peaks are damped; this is particularly evident
for β = 10−3, and in this case it is due to the fact that
β∗ decreases as m increases, so that for m ∼ 100 TeV
we return to the non-resonant, 1/β behaviour, and the
enhancement takes the constant value πα/β # 100.

Complementary information can be extracted from
the analysis of the upper panel of Fig. 3, where we
plot the Sommerfeld enhancement as a function of β,
for different values of the particle mass. Far from
the resonances, the enhancement factor initially grows
as 1/β and then saturates to some constant value.
This constant value can be estimated by solving the
Schrödinger equation with β = 0. We find that a
reasonable order of magnitude estimate is given by
Smax ∼ 6α/ε; the corresponding value of β ∼ 0.5ε.
The 1/β behaviour holds down to smaller velocities
for larger particle masses, leading to larger enhance-
ment factors. However, when the particle mass is close
to a resonance, S initially grows like 1/β but at some
point the 1/β2 behaviour ”turns on”, leading to very
large values of the boost factor, until this also satu-
rates to some constant value.

Lattanzi, Silk (2009)
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Important interactions

. . .. . .
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annihilation self-scattering scattering

First part of talk
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Part I: Thermal history of WIMPs

Chemical decoupling 

Kinetic decoupling
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annihilations cease at x∼25 (rate∝n𝛘n𝛘 )

number density “freezes out”

sets relic abundance

Particle DM and small-scale structure 6
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
Eq. (A.8). This picture is a bit complicated by the fact that kinetic decoupling in some

cases can take place close to, or even above the QCD phase transition, the details of

which are not yet fully understood. Lattice calculations, however, start to converge at

a value for the critical temperature of Tc ≈ 170 MeV for the most interesting case of

two light (up and down) and one more massive (strange) quark flavour [23] and indicate

that the plasma can be described by free quarks and gluons only for T " 4Tc [24]. For
the effective number of degrees of freedom during the transition, we adopt the results

of [25] as displayed in the right panel of Fig. 1. As scattering partners are concerned,

we conservatively restrict ourselves to leptons and, for T > 4Tc, to the three lightest

quarks.

The resulting range in Tkd for neutralino dark matter, obtained after having

performed the extensive scan described in Section 2, is shown in Fig. 2 as a function of

the mass mχ and gaugino fraction Zg ≡ |N11|2 + |N12|2 (in our case dominated by the
Bino fraction). The gray band indicates the QCD phase transition; values for Tkd inside

or above this band should be interpreted as upper bounds on the decoupling temperature

since the scattering with some of the hadronic degrees of freedom was not taken into

account. On the other hand, as the coupling of WIMPs to hadrons is usually smaller

than to leptons, the difference between this upper bound and the actual value of Tkd is

not expected to be very big; note also that the scattering with bound QCD states like,

scattering off heat bath particles 

ceases at x≫25 (rate∝n𝛘nSM )

WIMPs cool down faster

sets cutoff mass for smallest 

subhalos

5



Interplay between 
chemical and kinetic decoupling

consistent description: set of coupled Boltzmann eq’s
relic density WIMP “temperature”

DM population depleted of 
lowest velocity particles

<σv> enhanced for v→0

DM velocity decreases 
faster after KD
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III. EVOLUTION OF DARK MATTER
DENSITY AFTER KINETIC DECOUPLING

In the conventional WIMP scenario, the collision term
in Eq. (1) can be completely neglected by the time
of kinetic decoupling, i.e. the further evolution of f
is only governed by the expansion of the universe –
at least until the tiny primordial density fluctuations
have grown large enough to trigger structure formation
and self-annihilation may start again. For the case of
Sommerfeld-enhanced annihilation rates, as we will dis-
cuss now in some detail, this part of the evolution history
is qualitatively di↵erent and much more complex.

A. A new era of annihilation

Let us focus on the standard situation where x
kd

�
x
cd

; around and after kinetic decoupling, we thus have
Y � Y

eq

. Therefore, the formal solution to Eq. (11) is
given by:

Y (x)�1 = Y (x
i

)�1 +

Z

x

xi

✓

1� x

3

g0⇤S
g⇤S

◆

sh�v
rel

i
Hx

dx , (24)

for any x
i

� x
cd

. In order to gain some qualitative un-
derstanding of this expression, let us again assume that
�v

rel

/ v2n. As discussed in the previous Section, we
roughly have v ' p/m

�

/ x�1/2 before kinetic decou-
pling and v / x�1 afterwards; as a consequence, we ex-
pect h�v

rel

i / x�ñ, where

ñ =

⇢

n forx . x
kd

2n forx & x
kd

. (25)

Approximating � given in Eq. (13) to be constant, we
can now integrate Eq. (24) and find

Y (x)�1�Y (x
i

)�1 ' �

(

1

1+ñ

⇣

1

x

1+ñ
i

� 1

x

1+ñ

⌘

for ñ 6= �1

ln(x/x
i

) for ñ = �1
.

(26)
Clearly, an appreciable change in Y for x > x

i

is only
possible for ñ  �1; in fact, taken at face value, annihi-
lations would never cease in that case. For the standard
WIMP scenario, this is impossible to achieve since s-wave
annihilation implies n = ñ=0 and higher partial waves
are even more strongly suppressed (e.g. n=1 for the p-
wave). For a Sommerfeld-like 1/v enhancement of s-wave
annihilations, however, the situation looks very di↵erent
and WIMPs may re-enter an era of annihilation [17]: in
this case, we do have ñ = �1 after kinetic decoupling.
On resonances, we could actually have h�v

rel

i / v�2,
i.e. ñ = �2 (see Appendix A); note that this would im-
ply a non-negligible annihilation rate even before kinetic
decoupling (with n = ñ = �1).

Let us now have a more detailed and quantitative look
at this e↵ect. Assuming that the DM velocity distribu-
tion stays Maxwellian even after kinetic decoupling (see

the following Section III B), we can use Eqs. (6,20) to
calculate h�v

rel

i
(2)

simply by replacing T ! T
�

. For a
Sommerfeld enhanced s-wave annihilation, e.g., we then
have

h�v
rel

i = hS(v)�
0

i|
T=T�

' 2
r

m
�

⇡T
�

�
0

, (27)

where the last step is valid if velocities of the order of
v ⇠ v̄ ⌘ p

3T
�

/m
�

fall into the Coulomb regime where

S(v) / v�1; this is exactly the T�1/2

�

/ x1/2 scaling men-
tioned above. For a full understanding of the evolution
of the WIMP number density and ”temperature” in this
regime, however, we need to solve the following coupled
system of di↵erential equations for y and Y that follows
from Eqs. (11, 17):

Y 0

Y
= �

1� x

3

g

0
⇤S

g⇤S

Hx
sY h�v

rel

i|
x=m

2
�/(s

2/3
y)

(28)

y0

y
= �

1� x

3

g

0
⇤S

g⇤S

Hx

"

2m
�

c(T )

✓

1� y
eq

y

◆

(29)

�sY
⇣

h�v
rel

i � h�v
rel

i
2

⌘

x=m

2
�/(s

2/3
y)

#

.

This set of equations provides one of our central results;
it clearly demonstrates that kinetic and chemical decou-
pling cannot, in general, be treated separately.
Some insight in the asymptotic behavior of these cou-

pled equations is achieved by considering the limit where
x � x

kd

, i.e. where the scattering term proportional to
c(T ) can be neglected. Assuming again �v

rel

/ v2n, and
using Eq. (22), we then find

y0

y
' n

3

Y 0

Y
=

ñ

6

Y 0

Y
. (30)

For n < 0, a decreasing Y will thus have the e↵ect of
increasing y even after kinetic decoupling; this simply
reflects the fact that the DM phase-space density is de-
pleted of low velocity particles, thereby increasing the
average velocity.
In the remainder of this Section, we will continue our

discussion of the further evolution of Y and y on a rather
general level; in Section IV, we will then consider a con-
crete class of WIMP DM models and show that the ef-
fects discussed here can, indeed, be quantitatively quite
important in determining the relic density or the small-
scale cut-o↵ in the mass-distribution of DM subhalos.

B. Dark matter self-scattering

In the presence of a Sommerfeld-enhanced annihilation
rate, also the DM self-scattering rate is enhanced (see Ap-
pendix A2); as a result, WIMPs can have a Maxwellian
velocity distribution even after kinetic decoupling has
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it clearly demonstrates that kinetic and chemical decou-
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Y
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For n < 0, a decreasing Y will thus have the e↵ect of
increasing y even after kinetic decoupling; this simply
reflects the fact that the DM phase-space density is de-
pleted of low velocity particles, thereby increasing the
average velocity.
In the remainder of this Section, we will continue our
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, i.e. where the scattering term proportional to
c(T ) can be neglected. Assuming again �v

rel

/ v2n, and
using Eq. (22), we then find

y0

y
' n

3

Y 0

Y
=

ñ

6

Y 0

Y
. (30)

For n < 0, a decreasing Y will thus have the e↵ect of
increasing y even after kinetic decoupling; this simply
reflects the fact that the DM phase-space density is de-
pleted of low velocity particles, thereby increasing the
average velocity.
In the remainder of this Section, we will continue our

discussion of the further evolution of Y and y on a rather
general level; in Section IV, we will then consider a con-
crete class of WIMP DM models and show that the ef-
fects discussed here can, indeed, be quantitatively quite
important in determining the relic density or the small-
scale cut-o↵ in the mass-distribution of DM subhalos.

B. Dark matter self-scattering

In the presence of a Sommerfeld-enhanced annihilation
rate, also the DM self-scattering rate is enhanced (see Ap-
pendix A2); as a result, WIMPs can have a Maxwellian
velocity distribution even after kinetic decoupling has

annihilation scattering

[arXiv:1202.5456 [hep-ph]]
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O(400)!

KD

WIMPs finally 
decouple -> Mcut

Important:
self-scattering ensures 

Maxwellian velocity 
distribution

need to check separately 
for every model!

here model: scalar mediator 
on resonance
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Part II: Small-scale problems 
of ΛCDM CosmologyPhysics of blazar heating

The intergalactic medium
Structure formation

Formation of dwarf galaxies
Puzzles in galaxy formation
Bimodality of galaxy clusters

“Missing satellite” problem in the Milky Way

Springel+ (2008)

Dolphin+ (2005)

Substructures in cold DM simulations much more numerous than
observed number of Milky Way satellites!

Christoph Pfrommer Blazar heatingslide reproduced with permission from Christoph Pfrommer
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The cusp vs. core problem

“The density profiles of all sample galaxies derived from 
the observed rotation curves (open grey triangles). Their 
inner slopes  are measured by applying a least square fit 
to all data points within the innermost kpc (bold black 
lines). The fitted values of  and the uncertainties are 
placed into the upper right corner of each panel. Note 
that the rotation curves of ESO 059-G001, NGC 4861, 
and NGC 5408 only contain two points in the inner 1 kpc. 
Therefore, no uncertainties can be given. The long-
dashed and dotted lines show the NFW and the ISO 
profiles, respectively, using the parameters of the 
minimum-disc case.”

J. van Eymeren, C. Trachternach, B. S. Koribalski, R.-J. Dettmar (2009)

observations of dwarf galaxies 
show core-like inner structure 

whereas a cusp is predicted from 
simulations
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The “Too big to fail”-problem

6 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat

Figure 3. Rotation curves for all subhalos with V
infall

> 30 km s�1 and V
max

> 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured V

circ

values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with V

circ

comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.

of V
circ

(r
1/2) for the bright Milky Way dwarf spheroidals.

As in Fig. 2, we plot only halos with V
infall

> 30 km s�1

and V
max

(z = 0) > 10 km s�1. Subhalos that are at least 2�
more massive than every dwarf (at r

1/2) are plotted as solid
curves; these are the “massive failures” discussed in BBK,
and each halo has at least four such subhalos. Fig. 3 shows
that each halo has several other subhalos with V

infall

> 30
that are unaccounted for as well: for example, halo B has
three subhalos that are not massive failures by our defini-
tion but that are inconsistent at 2� with every dwarf except
Draco. Even ignoring the subhalos that are completely un-
accounted for (and are yet more massive than all of the MW
dSphs), the remaining massive subhalos do not resemble the
bright MW dSph population.

3.3 High redshift progenitors of massive subhalos

To investigate the possible impact of reionization on our re-
sults, we show the evolution of the progenitors of all subhalos
with V

infall

> 30 km s�1 in Figure 4. The solid curve show
the median M(z), while the shaded region contains 68% of
the distribution, centered on the median, at each redshift.

For comparison, we also show T
vir

(z) = 104 K (the tempera-
ture at which primordial gas can cool via atomic transitions)
and 105 K (dashed lines), as well as the mass Mc(z) below
which at least half of a halo’s baryons have been removed
by photo-heating from the UV background (Okamoto et al.
2008). Subhalos with V

infall

> 30 km s�1 lie above Mc and
T
vir

= 104 K at all redshifts plotted, indicating that they are
too massive for photo-ionization feedback to significantly al-
ter their gas content and thereby inhibit galaxy formation.

Figure 5 focuses on the z = 6 properties of these sub-
halos. It shows the distribution of halo masses at z = 6
for “massive failures” (open histogram) and the remaining
subhalos (filled histogram), which are possible hosts of the
MW dSphs. The massive failures are more massive at z = 6,
on average, than the potentially luminous subhalos. This
further emphasizes that reionization is not a plausible ex-
planation of why the massive failures do not have stars: the
typical massive failure is a factor of ten more massive than
the UV suppression threshold at z = 6. Implications of this
result will be discussed in Boylan-Kolchin et al. (in prepa-
ration).

In a series of recent papers, Broderick, Chang, and

c� 2012 RAS, MNRAS 000, 1–17

most massive 
subhalos in 
simulations of MW 
sized halos are too 
dense to host 
observed brightest 
satellites!
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Small-scale problems 
of ΛCDM Cosmology

missing satellites: simulations predict many more subhalos 
than number of galaxy satellites inferred from observed galaxy 
luminosities and HI mass functions
proposed solutions: increase gas entropy before collapse, suppress cooling 
efficiency, photo-evaporation, supernovae feedback, WDM...

Cusp/Core: observed cores of dSph and LSB galaxies in 
tension with cuspy internal density structure obtained by 
simulations.
proposed solutions: large velocity anisotropy, baryonic feedback, IDM,  
vdSIDM...

“too big to fail”: most massive subhalos in simulations of MW 
sized halos too dense to host observed brightest satellites.
proposed solutions: increased stochasticity of galaxy formation, low MW mass, 
(WDM), vdSIDM...

Most solutions have shortcomings or only solve 1 or 2 
problems at the same time
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Self-scattering in structure formation
velocity dependent Self-Interacting DM is promising: 
[Loeb, Weiner (2011)], [Vogelsberger, Zavala, Loeb (2012)]

avoids astrophysical constraints (unlike SIDM)
produces cored subhalos without affecting inner density profiles on 
larger scales
most massive subhalos are less dense and consistent with 
observations

2 benchmark models 
(σmax, vmax) solve:

cusp/core 
“too big to fail”

translated to (m𝝌, mA’),  where 
V is a vector mediator

need m𝝌 > 600 GeV
mA’ = O((sub) MeV)
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DM scattering off other particles
freestreaming of WIMPs after kinetic decoupling creates cutoff in 
powerspectrum
acoustic oscillations leads to similar cutoff 
cutoff scale is set by size of horizon at KD: late KD -> high Mcut
Mcut = Max(Mfs, Mao): only objects with M≧Mcut form
scattering for 

scalar mediator
scatters off Φ, μ± and e±  
Saturation of TKD ∼ 0,1 MeV 
ν’s negligible:
|MΦν→Φν|2 ∝ mν2

vector mediator: 
ν’s contribute:

|MVν→Vν|2 ∝ Eν2
 TKD can decrease to
O(keV)! 
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gl

T K
D
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D
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Missing satellites and the cutoff mass
DM with vector mediator scattering off neutrino’s:  
very late decoupling -> high Mcut

Lyman-α bounds: Mcut < 5.1 x 1010 M⊙ (mwdm > 1 keV)

Mcut that can solve 
missing satellite problem 
inferred from N-body 
simulations with WDM

possibly solves also 
missing satellites 
problem!

More simulations and model building needed to confirm.

10
11 M ü

10
8 M ü

10
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10
10 M ü

cutoff too small to
address abundance

problem

Ly-a
excluded

mc = 500 GeV
mc = 10 TeV
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[arXiv:1205.5809 [astro-ph.CO]]
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Conclusions

First consistent framework to describe interplay between 
chemical and kinetic decoupling

possibility of new era of annihilations
Small-scale problems of ΛCDM Cosmology can be solved by 
a DM model with:

velocity-dependent self-interactions mediated by 
(sub)MeV vector mediator
much later kinetic decoupling than in standard case 
follows naturally for vector mediator coupling to 
neutrinos

Need further model building and simulations to confirm.

Thank you for your attention!
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Backup Slides
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off resonance: S∼1/v
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Kinetic decoupling temperature
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Thermal evolution of WIMPs

The smallest protohaloes

Free streaming of WIMPs after
kinetic decoupling

washes out density
fluctuations on small
scales
(like baryonic oscillations)
translates to mass-scale
Mcut of smallest
gravitationally bound
objects
depends strongly on
particle physics
) not necessarily
Mcut ⇠ 10�6M� !

Particle DM and small-scale structure 9
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Figure 3. The left panel shows the exponential cuto� scales associated to the main
damping mechanisms of the matter power spectrum after kinetic decoupling, viz. free
streaming and the e�ect of acoustic oscillations, respectively; for models above (below)
the dashed line, the former (latter) mechanism thus provides a stronger suppression of
the power spectrum. In the right panel, the cuto� mass resulting from the dominating
of these two independent e�ects is plotted against the neutralino mass, indicating the
typical size of the smallest protohalos to be formed.

cuto� Mcut in the power spectrum is thus, rather, given by Mcut = max [Mfs, Mao]; the

possible range of Mcut is displayed in the right panel of Fig. 3 as a function of m�.
For very small values of Mcut, corresponding to large Tkd, one might wonder whether

the QCD transition could leave an imprint on the power spectrum. In fact, if it is first

order, the sound speed vanishes during the transition and density perturbations fall

freely, potentially leading to the production of DM clumps with masses of 10�20 to

10�10M� [8]. However, the corresponding enhancement factor in the CDM density

fluctuations is only between 2 (from a lattice fit) and 20 (using the bag model) at scales
of ⇠ 10�15M� and significantly smaller at larger scales; this has to be compared to the

exponential suppression of power below Mcut due to the damping mechanisms discussed

here. For the smallest cuto� scales shown in Fig. 3, Mcut � 10�10M�, the actual cuto�

mass might thus be slightly, but certainly not very much, smaller than indicated –

depending on the details of the QCD phase transition.

Following the paradigm of hierarchical structure formation, the smallest scales,
and thus the scales closest to the cuto�, typically enter the non-linear regime first. The

smallest gravitationally bound objects to be formed in the universe are in that case also

the first; protohalos with a mass of around Mcut. This behaviour has been confirmed

numerically, where these protohalos could be followed until a redshift of z ⇠ 26 [28].

The range of expected minimal protohalo masses displayed in Fig. 3 is only slightly

smaller than what was found earlier [29] using an order-of-magnitude estimate for Tkd
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